【摘要】一元二次不等式及其解法(第1課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系..合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:觀察不等式x2-4x0,它們有什么共同特征?怎樣給這樣的不等式命名?它的一般形式是什么?問題2:請(qǐng)嘗試求解不等式x2-4x0.
2024-12-09 03:40
【摘要】第一講不等式解法一、含絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號(hào)各端加2,得-2x6。∴不等式解集是{x|-2
2025-06-19 08:38
【摘要】第一篇:高中數(shù)學(xué)教學(xué)案例的反思----一元二次不等式及其解法 高中數(shù)學(xué)教學(xué)案例的反思 ————一元二次不等式及其解法 一、教學(xué)內(nèi)容分析 一元二次不等式的解法是高中重要的基本功,也是初中與高中的...
2024-11-04 12:50
【摘要】一元二次不等式學(xué)案學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.掌握一元二次不等式的解法,會(huì)討論含參數(shù)的一元二次不等式的解集.2.會(huì)解決含參數(shù)的一元二次不等式恒成立問題.課課前前準(zhǔn)準(zhǔn)備備一、知識(shí)梳理1.一元二次方程、一元二次不等式、二次函數(shù)三者密切相關(guān),因而在一元二次不等式求解時(shí)要注意利用相應(yīng)二次函數(shù)的圖象及相應(yīng)二次方程的
2024-12-05 06:25
【摘要】含參一元二次不等式的解法溫縣第一高級(jí)中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對(duì)參數(shù)的分類討論以確定不等式的解,:①比較兩根大?。虎谂袆e式的符號(hào);③.一、根據(jù)二次不等式所對(duì)應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價(jià)于,所對(duì)應(yīng)方程的兩根是,.解:原不等式等價(jià)于,所對(duì)應(yīng)方程的兩根是或.當(dāng)時(shí),有,所以不等式的解集為或.當(dāng)時(shí),有,所
2025-06-25 16:54
【摘要】一元二次不等式的解法第二課時(shí)一、復(fù)習(xí)(1)化成標(biāo)準(zhǔn)形式ax2+bx+c0(a0)ax2+bx+c0)(2)判定△與0的關(guān)系,并求出方程ax2+bx+c=0的實(shí)根;
2024-11-18 12:16
【摘要】1一元二次不等式及其解法導(dǎo)學(xué)案一、學(xué)習(xí)目標(biāo)理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;二、本節(jié)重點(diǎn)難點(diǎn)熟練掌握一元二次不等式的解法問題1:請(qǐng)同學(xué)們畫出一次函數(shù)72??xy的圖象,從圖象上觀察y=0,y&
2024-11-21 22:11
【摘要】x-1x2-40的解集為()A.(-2,0)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)解析:∵不等式x-1x2-40∴x-1?x-2??x+2?0,∴(x+2)(x-1)(x-2)0由標(biāo)根
2024-11-15 22:59
【摘要】1關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對(duì)參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問題自然得到了很好的解決,在教學(xué)的過程中本人發(fā)現(xiàn)參數(shù)的討
2025-08-11 21:45
【摘要】關(guān)于含參數(shù)(單參)的一元二次不等式的解法探究含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是學(xué)生不清楚該如何對(duì)參數(shù)進(jìn)行討論,筆者認(rèn)為這層“紙”捅破了,問題自然得到了很好的解決,在教學(xué)的過程中本人發(fā)現(xiàn)參數(shù)的討論實(shí)際上就是參數(shù)的分類,而參
2025-04-07 20:32
【摘要】方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象不等式的解集ax2+bx+c>0ax2+bx+c<0a>0xyox1x2xox0yxoy當(dāng)⊿>0時(shí),方程有兩不等的根:x1,
2024-10-17 03:35
【摘要】第一篇: (3課時(shí)) (一)教學(xué)目標(biāo) :從實(shí)際問題中建立一元二次不等式,解一元二次不等式;應(yīng)用一元二次不等式解決日常生活中的實(shí)際問題;能用一個(gè)程序框圖把求解一般一元二次不等式的過程表示出來; ...
2024-10-20 18:25