【摘要】等比數(shù)列的前n項和第二課時一、復習等比數(shù)列的前n項和公式:1(1)(1)1????nnaqSqq1(1)1????nnaaqSqq由an=a1qn-1代入可得特別地,當q=1時,Sn=na1注意:“錯位相減法”的過程
2025-01-20 19:50
【摘要】第一篇:高二數(shù)學《等比數(shù)列》(2課時)教案(新人教A版必修5) 課題:§ 授課類型:新授課 (第2課時) ●三維目標 知識與技能:靈活應用等比數(shù)列的定義及通項公式;深刻理解等比中項概念;熟悉...
2024-11-09 12:33
【摘要】第一篇: 2.4等比數(shù)列 (一)教學目標 1`.知識與技能:理解等比數(shù)列的概念;掌握等比數(shù)列的通項公式;理解這種數(shù)列的模型應用. 2.過程與方法:通過豐富實例抽象出等比數(shù)列模型,經(jīng)歷由發(fā)現(xiàn)幾個...
2024-11-05 04:12
【摘要】等比數(shù)列第1課時等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個常數(shù)”的含義.2.掌握等比數(shù)列的通項公式及其應用.3.會判定等比數(shù)列,了解等比數(shù)列在實際中的應用.1231.等比數(shù)列文字語言一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)
2025-01-20 17:05
【摘要】談一類遞推數(shù)列求通項公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項的問題.它的基本形式是:已知1a及遞推關系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2025-02-10 20:21
【摘要】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質:若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2025-01-21 12:17
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)16等比數(shù)列(第2課時)新人教版必修51.一直角三角形三邊邊長成等比數(shù)列,則()A.三邊邊長之比為3∶4∶5B.三邊邊長之比為3∶3∶1C.較大銳角的正弦為5-12D.較小銳角的正弦為5-12答案D解析不妨設A最小,C為直角,依題意???
2025-01-31 01:20
【摘要】A等比數(shù)列等比數(shù)列×國際象棋起源于印度,關于國際象棋有這樣一個傳說,國王要獎勵國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒麥子,第三個格子上放4粒麥子,第四個格子上放8粒麥子,依次類推,直到第64個格子放滿為止?!眹蹩犊卮饝怂?。
2024-09-15 19:27
【摘要】等比數(shù)列的前n項和(第2課時)學習目標掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關問題.通過等比數(shù)列的前n項和公式的推導過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學習,發(fā)展數(shù)學應用意識,逐步認識數(shù)學的科學價值、應用價值,發(fā)展數(shù)學的理性思維.合作學習一、設計問題,創(chuàng)設情
2025-02-11 03:41
【摘要】【成才之路】2021年春高中數(shù)學第1章數(shù)列3等比數(shù)列第2課時等比數(shù)列的性質同步練習北師大版必修5一、選擇題1.等比數(shù)列中,a5a14=5,則a8·a9·a10·a11=()A.10B.25C.50D.75[答案]B[解析]
2025-02-07 06:36
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)15等比數(shù)列(第1課時)新人教版必修51.(2021·江西)等比數(shù)列x,3x+3,6x+6,…的第四項等于()A.-24B.0C.12D.24答案A解析由題意得:(3x+3)2=x(6x+6),解得x=-3或-x
【摘要】第2課時等比數(shù)列的性質1.復習鞏固等比數(shù)列的概念及其通項公式.2.掌握等比中項的應用.3.掌握等比數(shù)列的性質,并能解決有關問題.121.等比數(shù)列的定義及通項公式12【做一做1】等比數(shù)列{an}的公比q=3,a1=13,則a5等于()
2025-01-20 19:03
【摘要】等比數(shù)列復習:(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項公式是什么?如果一個數(shù)列從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-02-23 16:31
【摘要】等比數(shù)列...學習目標等比數(shù)列的定義定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(指與n無關的數(shù)),這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q(q≠0)表示。??11nnnnaaqqaa
2025-01-21 12:09
【摘要】知識回顧等比數(shù)列(G·P)1.定義2.通項公式問題探究滿足什么關系式?,,試問:三個數(shù)成等比數(shù)列,,,:已知 探究bGabGa1??結論?成立?你又能得到什么)是否() ?。??你據(jù)此就得到什么結論)是否成立?() ?。ǔ闪幔繛槭裁??是否成立?) ?。ㄊ堑缺葦?shù)列:已知 探究031
2025-04-13 14:53