【摘要】數(shù)列求和方法歸總結(jié)【教學(xué)目標(biāo)】:1.掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式,并會(huì)靈活應(yīng)用。2.掌握求一些特殊數(shù)列前n項(xiàng)和的方法。3.體會(huì)并理解數(shù)列求和中蘊(yùn)含的數(shù)學(xué)思想方法。【重點(diǎn)難點(diǎn)】:1.重點(diǎn):⑴.等差數(shù)列、等比數(shù)列公式的靈活應(yīng)用;⑵.掌握求一些特殊數(shù)列前n項(xiàng)和的方法。2.難點(diǎn):掌握
2025-01-19 08:49
【摘要】精品資源第02講數(shù)列的求和方法(一)知識(shí)歸納: 1.拆項(xiàng)求和法:將一個(gè)數(shù)列拆成若干個(gè)簡單數(shù)列(如等差數(shù)列、等比數(shù)列、常數(shù)數(shù)列等等),然后分別求和. 2.并項(xiàng)求和法:將數(shù)列的相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新的且更容易求和的數(shù)列. 3.裂項(xiàng)求和法:將數(shù)列的每一項(xiàng)拆(裂開)成兩項(xiàng)之差,使得正負(fù)項(xiàng)能互相抵消,剩下首尾若干項(xiàng). 4.錯(cuò)位求和法:將一個(gè)數(shù)列
2024-08-09 18:26
【摘要】1題目:數(shù)列的求和主講人:鄧盛2,能熟練運(yùn)用這些方法解決問題。,歸納總結(jié)能力,聯(lián)想、轉(zhuǎn)化、化歸能力,探究創(chuàng)新能力。讓學(xué)生認(rèn)識(shí)到事物是普遍聯(lián)系,發(fā)展變化的。二.教學(xué)目標(biāo):一、教學(xué)重點(diǎn):掌握特殊數(shù)列的求和方法,主要學(xué)習(xí)分組求和法,錯(cuò)位相減法,裂項(xiàng)相消法。31、2+4+6+
2024-12-01 08:08
【摘要】一、公式法1.如果一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,則求和時(shí)直接利用等差、等比數(shù)列的前n項(xiàng)和公式,注意等比數(shù)列公比q的取值情況要分q=1或q≠1.(1)1+2+3+4+…+n=(2)1+3+5+7+…+2n-1=(3)2+4+6+8+…+2n=n?n+1
2024-09-05 07:29
【摘要】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2024-09-15 09:35
【摘要】割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體而無所失矣.溫馨提示:請(qǐng)點(diǎn)擊相關(guān)欄目。整知識(shí)·萃取知識(shí)精華整方法·啟迪發(fā)散思維考向分層突破一考向分層突破二考向分層突破三整知識(shí)萃取知識(shí)精華結(jié)束放映返回導(dǎo)航頁
2025-03-02 09:23
【摘要】數(shù)列求和的幾種情形一、分組法例1求.變式練習(xí)1:已知數(shù)列的前項(xiàng)和,試求:(1)的通項(xiàng)公式;(2)記,求的前項(xiàng)和二、倒序相加例2求三、錯(cuò)位相減例3
2024-09-04 04:57
【摘要】數(shù)列的求和高三備課組一、基本方法1.直接用等差、等比數(shù)列的求和公式求和。公比含字母是一定要討論無窮遞縮等比數(shù)列時(shí),dnnnaaanSnn2)1(2)(11???????????????????)1
2025-01-13 00:27
【摘要】數(shù)列的求和數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)
2025-01-14 02:53
【摘要】內(nèi)江師范學(xué)院學(xué)年論文各專業(yè)全套優(yōu)秀畢業(yè)設(shè)計(jì)圖紙目錄摘要......................................................................錯(cuò)誤!未定義書簽。ABSTRACT.........................................................
2024-10-27 12:40
【摘要】第一篇:數(shù)列求和方法及數(shù)學(xué)歸納法 數(shù)列求和 一、常用公式法 直接利用公式求和是數(shù)列求和的最基本的方法.常用的數(shù)列求和公式有: 等差數(shù)列求和公式: 等比數(shù)列求和公式: 二、錯(cuò)位相減法 可以...
2024-10-12 10:10
【摘要】數(shù)列求和的基本方法和技巧一、總論:數(shù)列求和7種方法:利用等差、等比數(shù)列求和公式錯(cuò)位相減法求和反序相加法求和分組相加法求和裂項(xiàng)消去法求和分段求和法(合并法求和)利用數(shù)列通項(xiàng)法求和二、等差數(shù)列求和的方法是逆序相加法,等比數(shù)列的求和方法是錯(cuò)位相減法,三、逆序相加法、錯(cuò)位相減法是數(shù)列求和的二個(gè)基本方法。一、利用常用求和公式求和利用
2024-09-02 16:04
【摘要】求通項(xiàng)公式專題一、利用與關(guān)系求1-1已知數(shù)列的前項(xiàng)和,求通項(xiàng)公式例1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)變式訓(xùn)練1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項(xiàng)和,求的通項(xiàng)公式..變式訓(xùn)練2已知數(shù)列的前項(xiàng)和滿足,求的通項(xiàng)公式..變式訓(xùn)練3
2025-05-12 02:53
【摘要】數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)n+1
2025-01-14 05:50
【摘要】第五節(jié)數(shù)列求和基礎(chǔ)梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見的數(shù)列的前n項(xiàng)和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個(gè)數(shù)列{
2025-01-15 18:12