【摘要】(二)本課時(shí)欄目開關(guān)填一填研一研練一練(二)本課時(shí)欄目開關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開關(guān)填一填研一研練一練(二)研一研·問題探究、課堂更高效本課時(shí)欄目開關(guān)填一填研一研練一練(
2024-09-15 10:29
【摘要】數(shù)列的求和高三備課組一、基本方法1.直接用等差、等比數(shù)列的求和公式求和。公比含字母是一定要討論無窮遞縮等比數(shù)列時(shí),dnnnaaanSnn2)1(2)(11???????????????????)1
2025-01-13 00:27
【摘要】若數(shù)列的前n項(xiàng)和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時(shí),有an=Sn-Sn-110歲的高斯(德國)的算法:n首項(xiàng)與末項(xiàng)的和:1+100=101n第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101n第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101n………………………………………n
2024-09-25 20:31
【摘要】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2024-09-26 01:26
【摘要】等比數(shù)列的定義:一、知識(shí)回顧:1qaann??1通項(xiàng)公式:211??nnqaa等比中項(xiàng):3abGabGbGa?????2成等比,,1+2+22+23+24+…+263=?:二、等比數(shù)列求和公式對(duì)①、②進(jìn)行比較.S64=1+2+4+8+…+262+263①2S64=2+4+8+16
2024-09-26 01:49
【摘要】數(shù)列的求和數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)
2025-01-14 02:53
【摘要】第27講│數(shù)列求和第27講數(shù)列求和第27講│知識(shí)梳理知識(shí)梳理求數(shù)列的前n項(xiàng)和,一般有下列幾種方法:1.等差數(shù)列的前n項(xiàng)和公式:Sn=____________=____________.(其中a1為首項(xiàng),d為公差)na1+n(n-1)2d
2025-01-14 21:09
【摘要】數(shù)列求和常見解題方法第二章數(shù)列課題鞠光炳)1(21,)1(???nnSnann1、記憶法:適用于常見數(shù)列求和nnSnann???2,2)3(6)12)(1(,)4(2????nnnSnann2,12)2(nSnann???12,2)5(1????nnnnSa2
2024-12-01 20:33
【摘要】?掌握數(shù)列求和的幾種常見方法.?【命題預(yù)測(cè)】?數(shù)列的求和在近幾年高考中,填空題與解答題都有出現(xiàn),重點(diǎn)以容易題和中檔題為主,基本知識(shí)以客觀題出現(xiàn),綜合知識(shí)則多以解答題體現(xiàn),主要是探索型和綜合型題目.復(fù)習(xí)時(shí),要具有針對(duì)性地訓(xùn)練,并以“注重?cái)?shù)學(xué)思想方法、強(qiáng)化運(yùn)算能力、重點(diǎn)知識(shí)重點(diǎn)訓(xùn)練”的角度做好充分準(zhǔn)備.第
2025-02-24 07:27
【摘要】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2024-09-26 00:55
【摘要】一、公式法1.如果一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,則求和時(shí)直接利用等差、等比數(shù)列的前n項(xiàng)和公式,注意等比數(shù)列公比q的取值情況要分q=1或q≠1.(1)1+2+3+4+…+n=(2)1+3+5+7+…+2n-1=(3)2+4+6+8+…+2n=n?n+1
2024-09-15 07:30
【摘要】等差數(shù)列求和公式:}{項(xiàng)和為的前數(shù)列nannsnnaaaas?????...321???1nnssna13211???????nnaaaas...10歲的高斯(德國)的算法:?首項(xiàng)與末項(xiàng)的和:1+100=101?第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101?第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101?
2024-09-26 01:37
【摘要】數(shù)列求和基本方法:?公式法?分組求和法?錯(cuò)位相減法?裂項(xiàng)相消法?并項(xiàng)求合法一.公式法:①等差數(shù)列的前n項(xiàng)和公式:②等比數(shù)列的前n項(xiàng)和公式:③④⑤
2024-09-25 23:37
【摘要】德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=10150+51=1015050思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如何求兩堆鋼管總數(shù)?2.聯(lián)想:(補(bǔ)成平行四邊形)59510100-25032105002255026(分割成一
2025-01-12 00:27
【摘要】1題目:數(shù)列的求和2等差數(shù)列的求和公式:等比數(shù)列的求和公式:dnnnaaansnn)1(212)(11???????1?q??1?q3例2:求數(shù)列11111,2,3,424816……的前n項(xiàng)和21nn??n解:因?yàn)閍1111(1
2025-02-23 16:34