【摘要】三角函數圖像變換一.知識點:(一)??sinyAx????的圖象和性質1.用“五點法”作??sinyAx????或??cosyAx????的圖象時,五點的橫坐標總由x???=0,2?,?,32?,2?來確定。3.當函數??sinyAx??????0,0A???表示一個簡諧運動時,則
2025-01-24 22:27
【摘要】第一篇:三角函數教案:6課時學案-任意角的三角函數2 課 題:任意角的三角函數 (二): 記憶法則: 第一象限全為正,(其中k?Z):用弧度制可寫成 sina0cosa0cota0si...
2024-10-25 14:40
【摘要】預測數據庫知識數據庫高端數據庫技能數據庫第四章三角函數與解三角形三角函數、同角三角函數與誘導公式高考趨勢交流高端數據庫經典例題備選1~56~1011~12知識數據庫技能數據庫預測數據庫,涉及的公式很多,常與實際問題相結合,因此必須牢固掌握.
2025-05-09 05:33
【摘要】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2
2024-08-30 16:04
【摘要】三角函數定義及其三角函數公式匯總1、勾股定理:直角三角形兩直角邊、的平方和等于斜邊的平方。2、如下圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B):定義表達式取值范圍關系正弦(∠A為銳角)余弦(∠A為銳角)正切(∠A為銳角)
2024-09-03 07:31
【摘要】附件:教學設計模板教學設計課題名稱:三角函數的誘導公式姓名:丁琬工作單位:鐘祥市胡集高級中學學科年級:高一年級教材版本:人教版一、課程標準要求數學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主
2025-06-03 12:49
【摘要】三角函數圖像的變換(學案)一,探究:2y(1)畫出函數,x?R的簡圖。x+xyy3ppOx(2)畫出函數,x?R的簡圖。x-xy
2024-09-27 07:18
【摘要】《三角函數的誘導公式》教學案整體設計教學分析本節(jié)主要是推導誘導公式二、三、四,并利用它們解決一些求解、化簡、證明問題.本小節(jié)介紹的五組誘導公式在內容上既是公式一的延續(xù),又是后繼學習內容的基礎,它們與公式一組成的六組誘導公式,用于解決求任意角的三角函數值的問題以及有關三角函數的化簡、證明等問題.在誘導公式的學習中,化歸思想貫穿始末,這一典型的數學思想,無論在本節(jié)
2025-06-03 12:09
【摘要】定義同角三角函數的基本關系圖像性質單位圓與三角函數線誘導公式Cα±βSα±β、Tα±βy=asin+bcosα的最值形如y=Asin(ωx+φ)+B圖像萬能公式和差化積公式積化和差公式Sα/2=Cα/2=Tα/2=S2α=C2α=T2α=
2024-09-01 02:27
【摘要】山東省各地市2012年高考數學(理科)最新試題分類大匯編:第3部分:三角函數(2)一、選擇題【山東省萊州一中2012屆高三第一次質檢理】,下列判斷正確的是()A.,有一解. B.,有兩解.C.,有兩解. D.,無解.【答案】A【山東省萊州一中2012屆高三第一次質檢理】′的圖象向左平移個單位,得到函數的圖象,則是()A.
2024-09-14 13:08
【摘要】三角函數公式誘導公式口訣“奇變偶不變,符號看象限”意義:k×π/2±a(k∈z)的三角函數值.(1)當k為偶數時,等于α的同名三角函數值,前面加上一個把α看作銳角時原三角函數值的符號; (2)當k為奇數時,等于α的異名三角函數值,前面加上一個把
2024-09-02 20:29
【摘要】《三角函數》說課稿 《三角函數》說課稿1 1、教學目標: 一、借助單位圓理解任意角的三角函數的定義。 二、根據三角函數的定義,能夠判斷三角函數值的符號。 ...
2024-12-06 00:31
【摘要】函數、三角函數、三角恒等變換重要公式1.=;=;2、當為奇數時,;當為偶數時,.3、⑴; ⑵;4、運算性質:⑴;⑵;⑶.5、指數函數解析式:6、指數函數性質:圖象性質(1)定義域:R(2)值域:(0,+∞)(3)過定點(0,1),即x=0時,y=1(4)在R上是增函數(4)在R上是
2024-09-04 05:18
【摘要】銳角三角函數教學反思銳角三角函數是定義在直角三角形中的研究邊角之間的關系。而銳角三角函數值實質上就是邊與邊之間的一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關系的根據。本節(jié)課重難點就是對比值的理解,可以從以下幾方面著手研究:(1)討論角的任意性(從特殊到一般),(2)運用相似三角形性質,讓學生領悟到:在直角三角形中,對于固定角,無論直角三角形大小怎么樣改變,都影響不到其
2024-09-28 17:10
【摘要】數學輔導講義年級:高一授課類型任意角的三角函數教學內容初中銳角的三角函數是如何定義的?在中,設對邊為,對邊為,對邊為,銳角的正弦、余弦、正切依次為.角推廣后,這樣的三角函數的定義不再適用,我們必須對三角函數重新定義。1.三角函數定義在直角坐標系中,
2025-07-03 00:51