【摘要】第八講大數(shù)定律與中心極限定理【主要內(nèi)容】介紹大數(shù)定律與中心極限定理?!局饕康摹勘緦?shí)驗(yàn)將借助MATHEMATICA軟件,了解隨機(jī)模擬的一些簡(jiǎn)單算法及其應(yīng)用。隨機(jī)變量在通訊、計(jì)算機(jī)網(wǎng)絡(luò)等一些工程應(yīng)用問(wèn)題中,通常需要進(jìn)行大量的仿真模擬,目前采用最多的隨機(jī)模擬方法是MonteCarlo方法,初等概率統(tǒng)計(jì)中的大
2024-11-04 08:33
【摘要】學(xué)號(hào):學(xué)號(hào):08802053大數(shù)定律和中心極限定理的應(yīng)用分院計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院專(zhuān)業(yè)信息與計(jì)算科學(xué)班級(jí)
2025-08-08 01:35
【摘要】第五章大數(shù)定律及中心極限定理習(xí)題課二、主要內(nèi)容三、典型例題一、重點(diǎn)與難點(diǎn)一、重點(diǎn)與難點(diǎn)中心極限定理及其運(yùn)用.證明隨機(jī)變量服從大數(shù)定律.大數(shù)定律二、主要內(nèi)容中心極限定理定理一定理二定理三定理一的另一種表示定理一
2025-02-21 01:29
2025-03-01 19:31
【摘要】引言迄今為止,人們已發(fā)現(xiàn)很多大數(shù)定律(lawsoflargenumbers),所謂大數(shù)定律,簡(jiǎn)單地說(shuō),就是大量數(shù)目的隨機(jī)變量所呈現(xiàn)出的規(guī)律,這種規(guī)律一般用隨機(jī)變量序列的某種收斂性來(lái)刻劃。本章僅介紹幾個(gè)最基本的大數(shù)定律。大量隨機(jī)現(xiàn)象的平均結(jié)果實(shí)際上是與各個(gè)個(gè)別隨機(jī)現(xiàn)象的特征無(wú)關(guān),并且?guī)缀醪辉偈请S機(jī)的了
2025-03-11 00:51
【摘要】1,第17次課:大數(shù)定律中心極限定理Ⅰ,熟悉切貝謝夫不等式,會(huì)進(jìn)行概率的估計(jì)大數(shù)定律的實(shí)際意義和數(shù)學(xué)表現(xiàn)形式:大量隨機(jī)現(xiàn)象中頻率和平均結(jié)果的穩(wěn)定性中心極限定理的實(shí)際意義和數(shù)學(xué)表現(xiàn)形式:正態(tài)分布的普遍性...
2024-11-18 23:56
【摘要】第四章大數(shù)定律與中心極限定理第1頁(yè)§特征函數(shù)§大數(shù)定律§隨機(jī)變量序列的兩種收斂性§中心極限定理第四章大數(shù)定律與中心極限定理第四章大數(shù)定律與中心極限定理第2頁(yè)§特征函數(shù)特征函
2024-09-14 16:59
【摘要】第三節(jié)抽樣分布一、基本概念二、常見(jiàn)分布三、小結(jié)一、基本概念1.統(tǒng)計(jì)量的定義,不含未知參數(shù).的觀察值,,,,21的一個(gè)樣本是來(lái)自總體設(shè)XXXXn?,,,,),,,(2121的函數(shù)是nnXXXXXXg??.計(jì)量中若g是一個(gè)統(tǒng)則稱(chēng)),,,(21nXg?nnXXXxxx,,,,,,2121??
2025-03-12 15:45
【摘要】1有意正數(shù)證明對(duì)任且獨(dú)立同分布設(shè)隨機(jī)變量??,,2,1,)(,0)(,,,,,221??????kXDXEXXXkkn解.11lim212???????????????nkknXnP是相互獨(dú)立的,因?yàn)??,,,,21nXXX也是相互獨(dú)立的,所以??,,
2025-07-14 17:20
【摘要】1第五章大數(shù)定律和中心極限定理§1大數(shù)定律??????????22222,0,5.11XEXDXPXPX????????????????
2025-02-20 23:53
【摘要】Chapter4(4),大數(shù)定理與中心極限定理,,,,,教學(xué)要求:,了解切比雪夫不等式;,2.了解切比雪夫定理和伯努利定理;,了解林德伯格-列維定理(獨(dú)立同分布的中心極限定理)和棣莫佛-拉普拉斯定理(...
2024-11-17 00:12
【摘要】§4.2中心極限定理,定理1獨(dú)立同分布的中心極限定理,設(shè)隨機(jī)變量序列,相互獨(dú)立,,服從同一分布,且有期望和方差:,則對(duì)于任意實(shí)數(shù)x,,注記,則Yn為,的標(biāo)準(zhǔn)化隨機(jī)變量,即n足夠大時(shí),Yn的分布函數(shù)近似...
【摘要】08級(jí)數(shù)學(xué)與應(yīng)用數(shù)學(xué)專(zhuān)業(yè)畢業(yè)論文目錄摘要 I1緒論 11.1課題的研究意義 11.2國(guó)內(nèi)外研究現(xiàn)狀 11.3研究目標(biāo) 22關(guān)于獨(dú)立分布的中心極限定理的探討 32.1中心極限定理的提法 32.2獨(dú)立同分布情形的兩個(gè)定理. 32.2.1林德伯格-----勒維中心極限定理 42.2.2隸莫弗——拉普拉斯定理 52.3獨(dú)立不同分布情形
2025-07-31 01:43
【摘要】第五章極限定理X~B(n,p),以Xi表示第i次試驗(yàn)A發(fā)生的次數(shù)???????niiXX1以X表示n重貝努里試驗(yàn)A發(fā)生次數(shù)EX=np,DX=npq,大數(shù)定律??niiX11???????????niiXnE
2025-03-12 16:39
【摘要】題目:中心極限定理及意義課程名稱(chēng):概率論與數(shù)理統(tǒng)計(jì)專(zhuān)業(yè)班級(jí):成員組成:聯(lián)系方式:2012年5月25日摘要:本文從隨機(jī)變量序列的各種收斂與他們的關(guān)系談起,通過(guò)對(duì)概率經(jīng)典定理——中心極限定理在獨(dú)立同分布和
2025-03-06 22:41