【摘要】勾股定理經(jīng)典例題詳解知識(shí)點(diǎn)一:勾股定理 如果直角三角形的兩直角邊長(zhǎng)分別為:a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點(diǎn)詮釋:(1)勾股定理揭示的是直角三角形平方關(guān)系的定理?! 。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)
2025-05-11 13:00
【摘要】全國(guó)中考信息資源門戶網(wǎng)站勾股定理全章知識(shí)點(diǎn)總結(jié)大全一.基礎(chǔ)知識(shí)點(diǎn):1:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,,則,,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直
2024-08-02 19:16
【摘要】勾股定理復(fù)習(xí)一.知識(shí)歸納1.勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么勾股定理的由來(lái):勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來(lái)人們進(jìn)一步發(fā)現(xiàn)
2024-08-02 03:12
【摘要】勾股定理知識(shí)點(diǎn)易錯(cuò)點(diǎn)一、知識(shí)體系:二、知識(shí)點(diǎn):1、直角三角形兩邊的平方和等于斜邊的平方。即:a2+b2=c2(a、b為直角邊,c為斜邊).如圖所示,我國(guó)古代把直角三角形的較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”。注意:(1)
2024-08-03 05:28
【摘要】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過(guò)程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2024-08-02 07:15
【摘要】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求
2024-08-03 07:40
【摘要】勾股定理經(jīng)典例題含答案11頁(yè)勾股定理是一個(gè)基本的初等幾何定理,直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊為a和b,斜邊為c,那么a2+b2=c2,若a、b、c都是正整數(shù),(a,b,c)叫做勾股數(shù)組。勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問(wèn)題的
【摘要】正弦定理教學(xué)重點(diǎn):正弦定理教學(xué)難點(diǎn):正弦定理的正確理解和熟練運(yùn)用,邊角轉(zhuǎn)化。多解問(wèn)題:在任一個(gè)三角形中,各邊和它所對(duì)角的正弦比相等,即 ==2.三角形面積公式在任意斜△ABC當(dāng)中S△ABC=:===2R(R為△ABC外接圓半徑)1)已知兩角和任意一邊,求其它兩邊和一角;2)已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角,進(jìn)而可求其它的邊和角。3)
2024-08-08 04:45
【摘要】勾股定理全章知識(shí)點(diǎn)總結(jié)大全一.基礎(chǔ)知識(shí)點(diǎn):1:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,,則,,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以
【摘要】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過(guò)程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2024-08-03 07:39
【摘要】類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的
【摘要】11頁(yè)共11頁(yè)勾股定理經(jīng)典例題詳解熟悉下列勾股數(shù),對(duì)解題是會(huì)有幫助的: ?、?、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.類型二:勾股定理的構(gòu)造應(yīng)用1、如圖,已知:在中,,,.求:BC的長(zhǎng). ,已知:,,于P.求證:.:如圖,∠B=∠D=90°,∠A=60
【摘要】橢圓的基本知識(shí)1.橢圓的定義:把平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于常數(shù)(大于),兩焦點(diǎn)的距離叫做焦距(設(shè)為2c).:(>>0)(>>0)焦點(diǎn)在坐標(biāo)軸上的橢圓標(biāo)準(zhǔn)方程有兩種情形,為了計(jì)算簡(jiǎn)便,可設(shè)方程為mx2+ny2=1(m0,n0)不必考慮焦點(diǎn)位置,求出方程:定義法、待定系數(shù)法、相關(guān)點(diǎn)法、直接法
2024-09-18 13:16