【摘要】貝葉斯估計(jì)BayesEstimation數(shù)理統(tǒng)計(jì)課題組例子:?某人打靶,打了5槍,槍槍中靶,?問(wèn):此人槍法如何??某人打靶,打了500槍,槍槍中靶,?問(wèn):此人槍法如何??經(jīng)典方法:極大似然估計(jì):100%?但是:……幾個(gè)學(xué)派(1)?經(jīng)典學(xué)派:頻率學(xué)派,抽樣學(xué)派?帶頭
2024-09-03 08:52
【摘要】樸素貝葉斯分類、摘要??????貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。本文作為分類算法的第一篇,將首先介紹分類問(wèn)題,對(duì)分類問(wèn)題進(jìn)行一個(gè)正式的定義。然后,介紹貝葉斯分類算法的基礎(chǔ)——貝葉斯定理。最后,通過(guò)實(shí)例討論貝葉斯分類中最簡(jiǎn)單的一種:樸素貝葉斯分類。、分類問(wèn)題綜述
2025-05-26 23:55
【摘要】貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…π()
2024-08-10 04:30
【摘要】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…
2025-08-11 20:01
【摘要】第二章貝葉斯決策理論§基于最小錯(cuò)誤率的貝葉斯判別法§基于貝葉斯公式的幾種判別規(guī)則§正態(tài)分布模式的統(tǒng)計(jì)決策§概率密度函數(shù)的估計(jì)§貝葉斯分類器的錯(cuò)誤概率1第二章貝葉斯決策理論模式識(shí)別的分類問(wèn)題就是根據(jù)待識(shí)客體的特征向量值及其它約束條件
2025-02-11 18:18
【摘要】貝葉斯網(wǎng)絡(luò)初步內(nèi)容提綱?何謂貝葉斯網(wǎng)絡(luò)??貝葉斯網(wǎng)絡(luò)的語(yǔ)義?條件分布的有效表達(dá)?貝葉斯網(wǎng)絡(luò)中的精確推理?貝葉斯網(wǎng)絡(luò)中的近似推理?課后習(xí)題、編程實(shí)現(xiàn)及研讀論文何謂貝葉斯網(wǎng)絡(luò)?A.貝葉斯網(wǎng)絡(luò)的由來(lái)B.貝葉斯網(wǎng)絡(luò)的定義C.貝葉斯網(wǎng)絡(luò)的別名D.獨(dú)立和條件獨(dú)立E.貝葉斯網(wǎng)絡(luò)示例
2024-12-01 09:50
【摘要】第二章貝葉斯決策理論,,,2.1引言2.2最小錯(cuò)誤率貝葉斯決策2.3最小風(fēng)險(xiǎn)貝葉斯決策2.4正態(tài)分布下的貝葉斯決策,2.1引言,統(tǒng)計(jì)決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類貝葉斯...
2024-10-20 20:29
【摘要】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(yú)(seabass)和鮭魚(yú)(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚(yú)進(jìn)行表示。?新來(lái)了一條魚(yú)特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚(yú)ω1還是鮭魚(yú)ω2??已知數(shù)據(jù):鱸魚(yú)類標(biāo)號(hào)ω1,鮭魚(yú)類標(biāo)號(hào)ω2。鱸魚(yú)
2025-04-06 16:28
【摘要】MCMC方法??一、貝葉斯統(tǒng)計(jì)的框架分析困難:后驗(yàn)分布是復(fù)雜的、高維的分布解決方法:馬爾可夫鏈蒙特卡羅(MCMC)方法后驗(yàn)分布先驗(yàn)信息似然函數(shù)?目前,MCMC已經(jīng)成為一種處理復(fù)雜統(tǒng)計(jì)問(wèn)題的特別流行的工具,尤其在經(jīng)常需要復(fù)雜的高維積分運(yùn)算的貝葉斯分析領(lǐng)域更是如此。在那里,高
2025-03-08 09:54
【摘要】貝葉斯空間計(jì)量模型一、采用貝葉斯空間計(jì)量模型的原因殘差項(xiàng)可能存在異方差,而?ML?估計(jì)方法的前提是同方差,因此,當(dāng)殘差項(xiàng)存在異方差時(shí),采用?ML?方法估計(jì)出的參數(shù)結(jié)果不具備穩(wěn)健性。二、貝葉斯空間計(jì)量模型的估計(jì)方法(一)待估參數(shù)對(duì)于空間計(jì)量模型(以空間自回歸模型為例)y
2024-10-25 00:52
【摘要】第二章貝葉斯決策理論?引言?最小錯(cuò)誤率貝葉斯決策???統(tǒng)計(jì)決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類?貝葉斯決策是統(tǒng)計(jì)決策理論的基本方法,它的基本假定是分類決策是在概率空間中進(jìn)行的,并且以下概率分布是已知的–每一類的概率分布–類條件概率密度
2025-02-15 02:31
2024-08-31 12:43
【摘要】課前思考?機(jī)器自動(dòng)識(shí)別分類,能不能避免錯(cuò)分類??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類概率密度函數(shù),后驗(yàn)
2025-03-10 05:59
【摘要】第五章貝葉斯決策?在前一章中,我們把人與自然界(或社會(huì))的博弈問(wèn)題歸納為決策問(wèn)題,它包含三個(gè)要素:狀態(tài)集;行動(dòng)集;損失函數(shù)。?至今為止,可供決策的信息有:先驗(yàn)信息;試驗(yàn)信息或抽樣信息,其中的關(guān)鍵就是要確定一個(gè)可觀察的隨機(jī)變量X,其概率分布中恰好把它當(dāng)作未知參數(shù)。?對(duì)上述兩種信息的使用情況,形成不同的決策問(wèn)題。(
2025-06-24 01:38