【摘要】第五章貝葉斯決策?在前一章中,我們把人與自然界(或社會(huì))的博弈問題歸納為決策問題,它包含三個(gè)要素:狀態(tài)集;行動(dòng)集;損失函數(shù)。?至今為止,可供決策的信息有:先驗(yàn)信息;試驗(yàn)信息或抽樣信息,其中的關(guān)鍵就是要確定一個(gè)可觀察的隨機(jī)變量X,其概率分布中恰好把它當(dāng)作未知參數(shù)。?對(duì)上述兩種信息的使用情況,形成不同的決策問題。(
2025-06-24 01:38
【摘要】現(xiàn)代信息決策方法2-5貝葉斯決策第三節(jié)風(fēng)險(xiǎn)型決策常用的風(fēng)險(xiǎn)型決策方法:(一)最大可能法(二)期望值決策(三)決策樹決策(四)貝葉斯決策(五)效用決策設(shè)不確定型決策問題的狀態(tài)出現(xiàn)的概率為(或)連續(xù)時(shí)記為。
2025-04-01 22:15
【摘要】第2章貝葉斯決策理論?引言?幾種常用的決策規(guī)則?基于最小錯(cuò)誤率的貝葉斯決策?基于最小風(fēng)險(xiǎn)的貝葉斯決策?限定一類錯(cuò)誤率,使另一類錯(cuò)誤率最小?最小最大決策?分類器、判別函數(shù)及決策面?正態(tài)分布時(shí)的統(tǒng)計(jì)決策引言?模式識(shí)別的目的就是要確定某一個(gè)給定的模式樣本屬于哪
2025-04-08 21:51
【摘要】1主要內(nèi)容?系統(tǒng)決策概述?定義與特點(diǎn)?問題與模型?系統(tǒng)決策的分類?系統(tǒng)決策的步驟?系統(tǒng)決策的原則?確定型決策方法?定義與條件?決策方法——線性規(guī)劃法?完全不確定型決策方法?五種決策原則?風(fēng)險(xiǎn)型決策方法?最大可能法?決策表法
2025-02-16 02:30
【摘要】框架單目標(biāo)決策多屬性決策個(gè)體決策群組決策不確定型決策風(fēng)險(xiǎn)型決策貝葉斯決策簡(jiǎn)單線性加權(quán)法理想解方法及改進(jìn)層次分析法等沖突分析集體決策社會(huì)選擇理論專家咨詢方法博弈分析談判決策風(fēng)險(xiǎn)性決策與貝葉斯決策
2025-03-21 12:45
【摘要】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問題的表格表示——損失矩陣對(duì)無觀察(No-data)問題a=δ可用表格(損失矩陣)替代決策樹來描述決策問題的后果(損失):……π()…π()…
2024-08-04 20:01
【摘要】 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)是概率密度估計(jì)的一種參數(shù)估計(jì),它將參數(shù)估計(jì)看成隨機(jī)變量,它需要根據(jù)觀測(cè)數(shù)據(jù)及參數(shù)鮮艷概率對(duì)其進(jìn)行估計(jì)。 一貝葉斯估計(jì)(1)貝葉斯估計(jì)...
2024-09-29 20:31
【摘要】第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計(jì)第一節(jié)貝葉斯推斷方法一、統(tǒng)計(jì)推斷中可用的三種信息美籍波蘭統(tǒng)計(jì)學(xué)家耐曼(-1981)高度概括了在統(tǒng)計(jì)推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體
2025-03-30 15:16
【摘要】參數(shù)估計(jì)2/8/2023第1頁1、統(tǒng)計(jì)決策?一、統(tǒng)計(jì)決策的三個(gè)要素1樣本空間和分布族設(shè)總體X的分布函數(shù)為F(x。?),?是未知參數(shù),若設(shè)X1,…,Xn是來自總體X的一個(gè)樣本,則樣本所有可能值組成的集合稱為樣本空間,記為X參數(shù)估計(jì)2/8/2023第2頁2決策
2025-02-23 07:36
【摘要】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(seabass)和鮭魚(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚進(jìn)行表示。?新來了一條魚特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚ω1還是鮭魚ω2??已知數(shù)據(jù):鱸魚類標(biāo)號(hào)ω1,鮭魚類標(biāo)號(hào)ω2。鱸魚
2025-04-05 14:22
【摘要】課前思考?機(jī)器自動(dòng)識(shí)別分類,能不能避免錯(cuò)分類??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類概率密度函數(shù),后驗(yàn)
2025-03-10 05:59
【摘要】第二章基于貝葉斯決策理論的分類器ClassifiersBasedonBayesDecisionTheory§1引言§2Bayes決策理論最小錯(cuò)誤率的貝葉斯決策最小風(fēng)險(xiǎn)的貝葉斯決策§3Bayes分類器和判別函數(shù)§4正態(tài)分布的
2025-04-11 14:15
2025-03-21 01:22
【摘要】物聯(lián)網(wǎng)系數(shù)據(jù)處理與智能決策解迎剛物聯(lián)網(wǎng)系Tel:136911179392智慧知識(shí)信息數(shù)據(jù)智能決策數(shù)據(jù)處理物聯(lián)網(wǎng)感知為什么要進(jìn)行數(shù)據(jù)預(yù)處理、如何對(duì)數(shù)據(jù)進(jìn)行預(yù)處理數(shù)據(jù)準(zhǔn)備:數(shù)據(jù)處理的要求和方法物聯(lián)網(wǎng)技術(shù)物聯(lián)網(wǎng)技術(shù)推動(dòng)了
2025-03-01 13:31
【摘要】第2章貝葉斯決策理論,2.0基本概念2.1最小錯(cuò)誤概率的Bayes決策2.2最小風(fēng)險(xiǎn)的Bayes決策2.3Neyman-Pearson決策2.4Bayes估計(jì)和Bayes學(xué)習(xí)2.5正態(tài)分布時(shí)的Baye...
2024-11-17 22:47