【摘要】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2024-09-26 01:37
【摘要】課時教學(xué)設(shè)計首頁授課教師:授課時間:10年9月8日課題課型新授課第幾課時1課時教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項和公式的推導(dǎo)方法,體會轉(zhuǎn)化的思想;項和公式,并能運用公式解決簡單的問題,用方程的思想認(rèn)識等比數(shù)列前項和公式,利用公式知三求
2024-09-28 16:48
【摘要】等比數(shù)列的前n項和A組基礎(chǔ)鞏固1.若數(shù)列{an}的前n項和為Sn=3n+a(a為常數(shù)),則數(shù)列{an}是()A.等比數(shù)列B.僅當(dāng)a=-1時,是等比數(shù)列C.不是等比數(shù)列D.僅當(dāng)a=0時,是等比數(shù)列解析:an=?????S1n=,Sn-Sn-1n=?????
2025-02-10 13:12
【摘要】等比數(shù)列的前n項和教學(xué)過程推進新課[合作探究]師在對一般形式推導(dǎo)之前,我們先思考一個特殊的簡單情形:1+q+q2+?+qn=?師這個式子更突出表現(xiàn)了等比數(shù)列的特征,請同學(xué)們注意觀察生觀察、獨立思考、合作交流、自主探究師若將上式左邊的每一項乘以公比q,就出現(xiàn)了什么樣的結(jié)果呢?生q+q2+?+qn
【摘要】等比數(shù)列的前n項和(第一課時)等比數(shù)列的前n項和等比數(shù)列的前項和一、教材分析二、目標(biāo)分析三、過程分析四、教法分析五、評價分析一、教材分析一、教材分析1.從在教材中的地位與作用來看《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,
2025-01-12 12:46
【摘要】課時作業(yè)11 等比數(shù)列的前n項和時間:45分鐘 滿分:100分課堂訓(xùn)練1.在等比數(shù)列{an}(n∈N+)中,若a1=1,a4=,則該數(shù)列的前10項和為( )A.2- B.2-C.2- D.2-【答案】 B【解析】 由a4=a1q3=q3=?q=,所以S10==2-.2.已知數(shù)列{an}的前n項和Sn=2n-1,則此數(shù)列奇數(shù)項的前n項和為( )
2024-08-05 04:04
【摘要】等比數(shù)列的綜合應(yīng)用A組基礎(chǔ)鞏固1.已知等比數(shù)列的公比為2,且前5項和為1,那么前10項和等于()A.31B.33C.35D.37解析:根據(jù)等比數(shù)列性質(zhì)得S10-S5S5=q5,∴S10-11=25,∴S10=33.答案:B2.在等比數(shù)列{an}中,S4=1,S8=
【摘要】等比數(shù)列的前n項和講授新課[提出問題]課本“國王對國際象棋的發(fā)明者的獎勵”[分析問題]如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導(dǎo)等比數(shù)列的前n項和公式。1、等比數(shù)列的前n項和公
2025-02-11 03:41
【摘要】人民教育出版社高中《數(shù)學(xué)》第一冊(上)第三章等比數(shù)列前n項和公式教師:武占斌山西大同市第二中學(xué)校說課的四個環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項和等差數(shù)列等比數(shù)列通項、遞推公式求和數(shù)列
2025-07-13 08:13
【摘要】等比數(shù)列的前n項和一、等比數(shù)列的前n項和公式1.乘法運算公式法∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1=a1(1+q+q2+…+qn-1)=a1·=,∴Sn=.2.方程法∵Sn=a1+a1q+a1q2+…+a1qn-1=a1+q(a1+a1q+…+a1qn-2)=a1+q(a1+a1q+…+a1qn-1-
2024-08-09 16:17
【摘要】第一頁,編輯于星期六:點三十四分。,2.5等比數(shù)列的前n項和第一課時等比數(shù)列前n項和公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第四...
2024-10-22 18:54
【摘要】等比數(shù)列的前n項和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-20 19:50
【摘要】等比數(shù)列的前n項和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-12-01 12:18
【摘要】等比數(shù)列通項公式:等比數(shù)列的定義:等比數(shù)列的性質(zhì):各個格子里的麥粒數(shù)依次是發(fā)明者要求的麥??倲?shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥??倲?shù)是:S64=1+2+22+…+263問題2:一般地,對于等比數(shù)列一般地
2024-09-15 15:48
【摘要】等比數(shù)列的前n項和(二)復(fù)習(xí)引入1.等比數(shù)列求和公式復(fù)習(xí)引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復(fù)習(xí)引入1.等比數(shù)列求和公式?????????
2024-08-31 04:14