【摘要】線、角、相交線、平行線(n≥2)個點,其中任何三點都不在同一直線上,那么每兩點畫一條直線,一共可以畫出n(n-1)條.〔n(n+1)+1〕個部分.,那么在這個圖形中共有線段的條數(shù)為n(n-1)條.(或延長線)上任一點分線段為兩段,這兩條線段的中點的距離等于線段長的一半.例:如圖,B在線段AC上,M是AB的中點,N是BC的中點.求證:MN=AC證明:∵M是A
2024-09-13 01:12
【摘要】圓的常用輔助線及作法嘗試練習一嘗試練習二數(shù)學歌訣作法及應用弦心距直徑圓周角切線徑兩圓相切公切線中點圓心線兩圓相交公共弦嘗試練習圓的常用輔助線及作法常用思想圓是初中幾何學習中重要內(nèi)容,學好圓的有關知識,掌握正確的解題方法,對于提高學生
2025-03-07 17:52
【摘要】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。 角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【摘要】初中數(shù)學輔助線的添加方法一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長使它們,相交后證交角為90°;證線段倍半關系可倍線段取中點或半線段加倍;證角的倍半關系也可類似添輔助線。2按基本圖形添輔助線:每個幾何定理都有與它相對應的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補完整基本圖形,因此“添線”應該叫做
2025-05-25 20:38
【摘要】常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線
2024-07-29 13:03
【摘要】樹誠學校獨家精品資料.以重點難點考點為學習的測重點。以講解演練為鞏固。以課堂為基礎進行學習的再提高。例談梯形中的常用輔助線在解(證)有關梯形的問題時,常常要添作輔助線,把梯形問題轉化為三角形或平行四邊形問題。本文舉例談談梯形中的常用輔助線,以幫助同學們更好地理解和運用。一、平移1、平移一腰:從梯形的一個頂點作一腰的平行線,把梯形轉化為一個三角形和一個平行四邊形。
2024-07-28 18:56
【摘要】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-06-01 02:46
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-12-25 17:05
【摘要】相似三角形中幾種常見的輔助線作法在添加輔助線時,所添加的輔助線往往能夠構造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進行相關的計算找到等量關系。主要的輔助線有以下幾種:一、添加平行線構造“A”“X”型例1:如圖,D是△ABC的BC邊上的點,BD:DC=2:1,E是AD的中點,求:BE:EF的值.解法一:過點D作CA的平行線交BF于點
2024-08-05 03:22
【摘要】初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。四邊形平行四邊形出現(xiàn),對稱中心等分點。梯形里面作高線,平移一腰試試
2024-08-27 18:02
【摘要】專業(yè)資料分享初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線
2024-08-27 18:01
【摘要】第一篇:初中教你如何做幾何輔助線 初中幾何輔助線做法 三角形 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段...
2024-10-24 21:17
【摘要】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時顯得十分復雜,若通過適當?shù)淖儞Q,即添加適當?shù)妮o助線(圖),將原圖形轉換成一個完整的、特殊的、簡單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對新圖形的分析,原問題順利獲解。有許多初中幾何常見輔助線作法歌訣,下面這一套是很好的:人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-05-22 03:02
【摘要】全等三角形輔助線系列之三與截長補短有關的輔助線作法大全一、截長補短法構造全等三角形截長補短法,是初中數(shù)學幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補短”,就是將一個已知的較短的線段延長至與另一個已知的較短的長度相等
2024-09-03 05:40
【摘要】全等三角形輔助線系列之一與角平分線有關的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點向角兩邊作垂線構全等:過角平分線上一點向角兩邊作垂線,利用角平分線上的點到兩邊距離相等的性質(zhì)來證明問題;2、截取構全等利用對稱性,在角的兩邊截取相等的線段,