freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中幾何輔助線做法大全-在線瀏覽

2024-09-13 01:12本頁面
  

【正文】 即AB+BD = AC⑵平分二倍角例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC求證:∠ABC = ∠ACB證明:作∠BAC的平分線AE交BC于E,則∠BAE = ∠CAE = ∠DBC∵BD⊥AC∴∠CBD +∠C = 90o∴∠CAE+∠C= 90o ∵∠AEC= 180o-∠CAE-∠C= 90o∴AE⊥BC∴∠ABC+∠BAE = 90o∵∠CAE+∠C= 90o∠BAE = ∠CAE∴∠ABC = ∠ACB⑶加倍小角例:已知,如圖,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC求證:∠ABC = ∠ACB證明:作∠FBD =∠DBC,BF交AC于F(過程略).例:已知,如圖,△ABC中,AB = AC,∠BAC = 120o,EF為AB的垂直平分線,EF交BC于F,交AB于E求證:BF =FC證明:連結(jié)AF,則AF = BF∴∠B =∠FAB∵AB = AC∴∠B =∠C∵∠BAC = 120o∴∠B =∠C∠BAC =(180o-∠BAC) = 30o∴∠FAB = 30o∴∠FAC =∠BAC-∠FAB = 120o-30o =90o又∵∠C = 30o∴AF = FC∴BF =FC練習(xí):已知,如圖,在△ABC中,∠CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DM⊥AB于M,DN⊥AC延長線于N求證:BM = CN規(guī)律37. 有垂直時(shí)常構(gòu)造垂直平分線.例:已知,如圖,在△ABC中,∠B =2∠C,AD⊥BC于D求證:CD = AB+BD證明:(一)在CD上截取DE = DB,連結(jié)AE,則AB = AE∴∠B =∠AEB∵∠B = 2∠C∴∠AEB = 2∠C又∵∠AEB = ∠C+∠EAC∴∠C =∠EAC∴AE = CE又∵CD = DE+CE∴CD = BD+AB(二)延長CB到F,使DF = DC,連結(jié)AF則AF =AC(過程略).例:已知,如圖,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD求證:△ABC為直角三角形證明:過D作DE⊥BC,交AC于E,連結(jié)BE,則BE = CE,∴∠C =∠EBC∵∠ABC = 2∠C∴∠ABE =∠EBC∵BC = 2AB,BD = CD∴BD = AB在△ABE和△DBE中AB = BD∠ABE =∠EBCBE = BE∴△ABE≌△DBE∴∠BAE = ∠BDE∵∠BDE = 90o∴∠BAE = 90o即△ABC為直角三角形,利用勾股定理證題.例:已知,如圖,在△ABC中,∠A = 90o,DE為BC的垂直平分線求證:BE2-AE2 = AC2證明:連結(jié)CE,則BE = CE∵∠A = 90o ∴AE2+AC2 = EC2∴AE2+AC2= BE2∴BE2-AE2 = AC2練習(xí):已知,如圖,在△ABC中,∠BAC = 90o,AB = AC,P為BC上一點(diǎn)求證:PB2+PC2= 2PA2.例:已知,如圖,在△ABC中,∠B = 45o,∠C = 30o,AB =,求AC的長. 解:過A作AD⊥BC于D∴∠B+∠BAD = 90o,∵∠B = 45o,∠B = ∠BAD = 45o,∴AD = BD∵AB2 = AD2+BD2,AB =∴AD = 1∵∠C = 30o,AD⊥BC∴AC = 2AD = 2四邊形部分.例:已知,□ABCD的周長為60cm,對(duì)角線AC、BD相交于點(diǎn)O,△AOB的周長比△BOC的周長多8cm,求這個(gè)四邊形各邊長.解:∵四邊形ABCD為平行四邊形∴AB = CD,AD = CB,AO = CO∵AB+CD+DA+CB = 60AO+AB+OB-(OB+BC+OC) = 8∴AB+BC = 30,AB-BC =8∴AB = CD = 19,BC = AD = 11答:這個(gè)四邊形各邊長分別為19cm、11cm、19cm、11cm.,相鄰兩個(gè)三角形周長之差等于鄰邊之差.(例題如上)例:已知,如圖,Rt△ABC,∠ACB = 90o,CD⊥AB于D,AE平分∠CAB交CD于F,過F作FH∥AB交BC于H求證:CE = BH證明:過F作FP∥BC交AB于P,則四邊形FPBH為平行四邊形∴∠B =∠FPA,BH = FP∵∠ACB = 90o,CD⊥AB∴∠5+∠CAB = 45o,∠B+∠CAB = 90o∴∠5 =∠B∴∠5 =∠FPA又∵∠1 =∠2,AF = AF∴△CAF≌△PAF∴CF = FP∵∠4 =∠1+∠5,∠3 =∠2+∠B∴∠3 =∠4∴CF = CE∴CE = BH練習(xí):已知,如圖,AB∥EF∥GH,BE = GC求證:AB = EF+GH. 例:已知,如圖,在□ABCD中,AB = 2BC,M為AB中點(diǎn)求證:CM⊥DM證明:延長DM、CB交于N∵四邊形ABCD為平行四邊形∴AD = BC,AD∥BC∴∠A = ∠NBA ∠ADN =∠N又∵AM = BM∴△AMD≌△BMN∴AD = BN∴BN = BC∵AB = 2BC,AM = BM∴BM = BC = BN∴∠1 =∠2,∠3 =∠N∵∠1+∠2+∠3+∠N = 180o,∴∠1+∠3 = 90o∴CM⊥DM.如圖:OE = OF(或這邊所在的直線)上的任意一點(diǎn)與對(duì)邊的兩個(gè)端點(diǎn)的連線所構(gòu)成的三角形的面積等于平行四邊形面積的一半.如圖:S△BEC = S□ABCD,不相鄰的兩個(gè)三角形的面積之和等于平行四邊形面積的一半.如圖:S△AOB + S△DOC = S△BOC+S△AOD = S□ABCD,不相鄰的兩條線段的平方和相等.如圖:AO2+OC2 = BO2 +DO2.如圖:四邊形GHMN是矩形(規(guī)律45~規(guī)律49請(qǐng)同學(xué)們自己證明).例:已知,如圖,E為矩形ABCD的邊AD上一點(diǎn),且BE = ED,P為對(duì)角線BD上一點(diǎn),PF⊥BE于F,PG⊥AD于G求證:PF+PG = AB證明:證法一:過P作PH⊥AB于H,則四邊形AHPG為矩形∴AH = GP PH∥AD∴∠ADB =∠HPB∵BE = DE∴∠EBD = ∠ADB∴∠HPB =∠EBD又∵∠PFB =∠BHP = 90o∴△PFB≌△BHP∴HB = FP∴AH+HB = PG+PF即AB = PG+PF證法二:延長GP交BC于N,則四邊形ABNG為矩形,(證明略):⑴作斜邊上的高例:已知,如圖,若從矩形ABCD的頂點(diǎn)C作對(duì)角線BD的垂線與∠BAD的平分線交于點(diǎn)E求證:AC = CE證明:過A作AF⊥BD,垂足為F,則AF∥EG∴∠FAE = ∠AEG∵四邊形ABCD為矩形∴∠BAD = 90o OA = OD∴∠BDA =∠CAD∵AF⊥BD∴∠ABD+∠ADB = ∠ABD+∠BAF = 90o∴∠BAF =∠ADB =∠CAD∵AE為∠BAD的平分線∴∠BAE =∠DAE∴∠BAE-∠BAF =∠DAE-∠DAC即∠FAE =∠CAE∴∠CAE =∠AEG∴AC = EC⑵作斜邊中線,當(dāng)有下列情況時(shí)常作斜邊中線:①有斜邊中點(diǎn)時(shí)例:已知,如圖,AD、BE是△ABC的高, F是DE的中點(diǎn),G是AB的中點(diǎn)求證:GF⊥DE證明:連結(jié)GE、GD∵AD、BE是△ABC的高,G是AB的中點(diǎn)∴GE = AB,GD = AB∴GE = GD∵F是DE的中點(diǎn)∴GF⊥DE②有和斜邊倍分關(guān)系的線段時(shí)例:已知,如圖,在△ABC中,D是BC延長線上一點(diǎn),且DA⊥BA于A,AC = BD求證:∠ACB = 2∠B證明:取BD中點(diǎn)E,連結(jié)AE,則AE = BE = BD∴∠1 =∠B∵AC = BD∴AC = AE∴∠ACB =∠2 ∵∠2 =∠1+∠B∴∠2 = 2∠B∴∠ACB = 2∠B.例:已知,如圖,過正方形ABCD對(duì)角線BD上一點(diǎn)P,作PE⊥BC于E,作PF⊥CD于F 求證:AP = EF 證明:連結(jié)AC 、PC∵四邊形ABCD為正方形∴BD垂直平分AC,∠BCD = 90o∴AP = CP∵PE⊥BC,PF⊥CD,∠BCD = 90o∴四邊形PECF為矩形∴PC = EF∴AP = EF.例:已知,如圖,正方形ABCD中,M為AB的中點(diǎn),MN⊥MD,BN平分∠CBE并交MN于N求證:MD = MN證明:取AD的中點(diǎn)P,連結(jié)PM,則DP = PA =AD∵四邊形ABCD為正方形∴AD = AB, ∠A =∠ABC = 90o∴∠1+∠AMD = 90o,又DM⊥MN∴∠2+∠AMD = 90o∴∠1 =∠2∵M(jìn)為AB中點(diǎn)∴AM = MB = AB∴DP = MB AP = AM∴∠APM =∠AMP = 45o∴∠DPM =135o∵BN平分∠CBE∴∠CBN = 45o∴∠MBN =∠MBC+∠CBN = 90o+45o= 135o即∠DPM =∠MBN∴△DPM≌△MBN∴DM = MN注意:把M改為AB上任一點(diǎn),其它條件不變,結(jié)論仍然成立。練習(xí):已知,如圖,在正方形ABCD中,E為AD上一點(diǎn),BF平分∠CBE交CD于F求證:BE = CF+AE,常把這條線段延長,構(gòu)造全等三角形.例:如圖,在正方形ABCD中,E、F分別是CD、DA的中點(diǎn),BE與CF交于P點(diǎn)求證:AP = AB 證明:延長CF交BA的延長線于K∵四邊形ABCD為正方形∴BC = AB = CD = DA ∠BCD =∠D =∠BAD = 90o ∵E、F分別是CD、DA的中點(diǎn)∴CE = CD DF = AF
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1