freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中幾何輔助線(xiàn)做法大全-wenkub.com

2025-07-31 01:12 本頁(yè)面
   

【正文】 AE證明:連結(jié)BE∵∠1 =∠3 ∠2 =∠1∴∠3 =∠2∵四邊形ACBE為圓內(nèi)接四邊形∴∠ACD =∠E∴△ABE∽△ADC∴∴ABBD=ACcos60o = 8= 4(海里)CD = BCBD即S梯形ABCD = ACBDS△BCD = CO練習(xí):已知,如圖,在正方形ABCD中,E為AD上一點(diǎn),BF平分∠CBE交CD于F求證:BE = CF+AE,常把這條線(xiàn)段延長(zhǎng),構(gòu)造全等三角形.例:如圖,在正方形ABCD中,E、F分別是CD、DA的中點(diǎn),BE與CF交于P點(diǎn)求證:AP = AB 證明:延長(zhǎng)CF交BA的延長(zhǎng)線(xiàn)于K∵四邊形ABCD為正方形∴BC = AB = CD = DA ∠BCD =∠D =∠BAD = 90o ∵E、F分別是CD、DA的中點(diǎn)∴CE = CD DF = AF = AD∴CE = DF∴△BCE≌△CDF∴∠CBE =∠DCF ∵∠BCF+∠DCF = 90o ∴∠BCF+∠CBE = 90o∴BE⊥CF又∵∠D =∠DAK = 90o DF = AF ∠1 =∠2∴△CDF≌△KAF∴CD = KA∴BA = KA又∵BE⊥CF∴AP = AB練習(xí):如圖,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CD+CP求證:AQ平分∠DAP,把梯形分成一個(gè)平行四邊形和一個(gè)三角形.例:已知,如圖,等腰梯形ABCD中,AD∥BC,AD = 3,AB = 4,BC = 7求∠B的度數(shù)解:過(guò)A作AE∥CD交BC于E,則四邊形AECD為平行四邊形∴AD = EC, CD = AE∵AB = CD = 4, AD = 3, BC = 7 ∴BE = AE = AB = 4∴△ABE為等邊三角形∴∠B = 60o ,把梯形轉(zhuǎn)化成一個(gè)矩形和兩個(gè)三角形.例:已知,如圖,在梯形ABCD中,AD∥BC,AB = AC,∠BAC = 90o,BD = BC,BD交AC于O求證:CO = CD證明:過(guò)A、D分別作AE⊥BC,DF⊥BC,垂足分別為E、F則四邊形AEFD為矩形∴AE = DF∵AB = AC,AE⊥BC,∠BAC = 90o,∴AE = BE = CE =BC,∠ACB = 45o ∵BC = BD∴AE = DF = BD又∵DF⊥BC∴∠DBC = 30o∵BD = BC∴∠BDC =∠BCD = (180o-∠DBC)= 75o∵∠DOC =∠DBC+∠ACB = 30o+45o = 75o∴∠BDC =∠DOC∴CO = CD,把梯形轉(zhuǎn)化成平行四邊形和三角形.例:已知,如圖,等腰梯形ABCD中,AD∥BC,AC⊥BD,AD+BC = 10,DE⊥BC于E求DE的長(zhǎng).解:過(guò)D作DF∥AC,交BC的延長(zhǎng)線(xiàn)于F,則四邊形ACFD為平行四邊形∴AC = DF, AD = CF∵四邊形ABCD為等腰梯形∴AC = DB∴BD = FD∵DE⊥BC ∴BE = EF =BF=(BC+CF) =(BC+AD)=10 = 5∵AC∥DF,BD⊥AC∴BD⊥DF∵BE = FE∴DE = BE = EF = BF = 5答:DE的長(zhǎng)為5.,把梯形轉(zhuǎn)化成三角形.例:已知,如圖,在四邊形ABCD中,有AB = DC,∠B =∠C,AD<BC求證:四邊形ABCD等腰梯形證明:延長(zhǎng)BA、CD,它們交于點(diǎn)E∵∠B =∠C∴EB = EC又∵AB = DC∴AE =DE ∴∠EAD =∠EDA∵∠E+∠EAD+∠EDA = 180o ∠B+∠C+∠E = 180o ∴∠EAD =∠B∴AD∥BC∵AD≠BC,∠B =∠C∴四邊形ABCD等腰梯形(此題還可以過(guò)一頂點(diǎn)作AB或CD的平行線(xiàn);也可以過(guò)A、D作BC的垂線(xiàn)),常過(guò)此中點(diǎn)作另一腰的平行線(xiàn),把梯形轉(zhuǎn)化成平行四邊形.例:已知,如圖,梯形ABCD中,AD∥BC,E為CD中點(diǎn),EF⊥AB于F求證:S梯形ABCD = EF可歸結(jié)為“角分垂等腰歸”.例:已知,如圖,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延長(zhǎng)線(xiàn)于E求證:BD = 2CE證明:分別延長(zhǎng)BA、CE交于F∵BE⊥CF∴∠BEF =∠BEC = 90o在△BEF和△BEC中∠1 = ∠2 BE = BE∠BEF =∠BEC∴△BEF≌△BEC∴CE = FE =CF∵∠BAC = 90o , BE⊥CF∴∠BAC = ∠CAF = 90o ∠1+∠BDA = 90o∠1+∠BFC = 90o∠BDA = ∠BFC在△ABD和△ACF中∠BAC = ∠CAF∠BDA = ∠BFCAB = AC∴△ABD≌△ACF∴BD = CF∴BD = 2CE練習(xí):已知,如圖,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,求證:AB-AC = 2CD,可結(jié)合已知條件,把圖形中的某兩點(diǎn)連接起來(lái)構(gòu)造全等三角形.例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,求證:∠A = ∠D證明:(連結(jié)BC,過(guò)程略),可取某條線(xiàn)段中點(diǎn),為證題提供條件.例:已知,如圖,AB = DC,∠A = ∠D 求證:∠ABC = ∠DCB 證明:分別取AD、BC中點(diǎn)N、M,連結(jié)NB、NM、NC(過(guò)程略),常過(guò)角平分線(xiàn)上的點(diǎn)向角兩邊做垂線(xiàn),利用角平分線(xiàn)上的點(diǎn)到角兩邊距離相等證題.例:已知,如圖,∠1 = ∠2 ,P為BN上一點(diǎn),且PD⊥BC于D,AB+BC = 2BD,求證:∠BAP+∠BCP = 180o證明:過(guò)P作PE⊥BA于E∵PD⊥BC,∠1 = ∠2 ∴PE = PD在Rt△BPE和Rt△BPD中BP = BPPE = PD∴Rt△BPE≌Rt△BPD∴BE = BD∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE∴AE = CD∵PE⊥BE,PD⊥BC∠PEB =∠PDC = 90o在△PEA和△PDC中PE = PD∠PEB =∠PDCAE =CD∴△PEA≌△PDC∴∠PCB = ∠EAP∵∠BAP+∠EAP = 180o∴∠BAP+∠BCP = 180o練習(xí):,如圖,PA、PC分別是△ABC外角∠MAC與∠NCA的平分線(xiàn),它們交于P,PD⊥BM于M,PF⊥BN于F,求證:BP為∠MBN的平分線(xiàn)2. 已知,如圖,在△ABC中,∠ABC =100o,∠ACB = 20o,CE是∠ACB的平分線(xiàn),D是AC上一點(diǎn),若∠CBD = 20o,求∠CED的度數(shù)。b = c③a177。b = c177。⑴作頂角的平分線(xiàn),底邊中線(xiàn),底邊高線(xiàn)例:已知,如圖,AB = AC,BD⊥AC于D,求證:∠BAC = 2∠DBC證明:(方法一)作∠BAC的平分線(xiàn)AE,交BC于E,則∠1 = ∠2 = ∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)過(guò)A作AE⊥BC于E(過(guò)程略)(方法三)取BC中點(diǎn)E,連結(jié)AE(過(guò)程略)⑵有底邊中點(diǎn)時(shí),常作底邊中線(xiàn)例:已知,如圖,△ABC中,AB = AC,D為BC中點(diǎn),DE⊥AB于E,DF⊥AC于F,求證:DE = DF證明:連結(jié)AD.∵D為BC中點(diǎn),∴BD = CD又∵AB =AC∴AD平分∠BAC∵DE⊥AB,DF⊥AC∴DE = DF⑶將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題例:已知,如圖,△ABC中,AB = AC,在BA延長(zhǎng)線(xiàn)和AC上各取一點(diǎn)E、F,使AE = AF,求證:EF⊥BC證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC∵∠B+∠ACB+∠ACN+∠ANC = 180o∴2∠BCA+2∠ACN = 180o∴∠BCA+∠ACN = 90o即∠BCN = 90o∴NC⊥BC∵AE = AF∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE∠BAC = ∠ACN +∠ANC∴∠BAC =2∠AEF = 2∠ANC∴∠AEF = ∠ANC∴EF∥NC∴EF⊥BC⑷常過(guò)一腰上的某一已知點(diǎn)做另一腰的平行線(xiàn)例:已知,如圖,在△ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線(xiàn)上,且BD = CE,連結(jié)DE交BC于F求證:DF = EF證明:(證法一)過(guò)D作DN∥AE,交BC于N,則∠DNB = ∠ACB,∠NDE = ∠E,∵AB = AC,∴∠B = ∠ACB∴∠B =∠DNB∴BD = DN又∵BD = CE ∴DN = EC在△DNF和△ECF中∠1 = ∠2∠NDF =∠EDN = EC ∴△DNF≌△ECF∴DF = EF(證法二)過(guò)E作EM∥AB交BC延長(zhǎng)線(xiàn)于M,則∠EMB =∠B(過(guò)程略)⑸常過(guò)一腰上的某一已知點(diǎn)做底的平行線(xiàn)例:已知,如圖,△ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線(xiàn)上,且AD = AE,連結(jié)DE求證:DE⊥BC證明:(證法一)過(guò)點(diǎn)E作EF∥BC交AB于F,則∠AFE =∠B∠AEF =∠C∵AB = AC∴∠B =∠C∴∠AFE =∠AEF∵AD = AE∴∠AED =∠ADE又∵∠AFE+∠AEF+∠AED+∠ADE = 180o∴2∠AEF+2∠AED = 90o 即∠FED = 90o ∴DE⊥FE又∵EF∥BC∴DE⊥BC(證法二)過(guò)點(diǎn)D作DN∥BC交CA的延長(zhǎng)線(xiàn)于N,(過(guò)程略)(證法三)過(guò)點(diǎn)A作AM∥BC交DE于M,(過(guò)程略)⑹常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形等邊三角形例:已知,如圖,△ABC中,AB = AC,∠BAC =
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1