【摘要】與平行四邊形有關(guān)的常用輔助線作法歸類(lèi)解析本文結(jié)合例題歸納六類(lèi)與平行四邊形有關(guān)的常見(jiàn)輔助線,供同學(xué)們借鑒:第一類(lèi):連結(jié)對(duì)角線,把平行四邊形轉(zhuǎn)化成兩個(gè)全等三角形。例1如左下圖1,在平行四邊形中,點(diǎn)在對(duì)角線上,且,請(qǐng)你以為一個(gè)端點(diǎn),和圖中已標(biāo)明字母的某一點(diǎn)連成一條新線段,猜想并證明它和圖中已有的某一條線段相等(只需證明一條線段即可)⑴連結(jié)⑵
2025-06-26 21:57
【摘要】專(zhuān)題學(xué)習(xí)幾何證明中常見(jiàn)的“添輔助線”方法“周長(zhǎng)問(wèn)題”的轉(zhuǎn)化Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形適用情況:圖中已經(jīng)存在兩個(gè)點(diǎn)—X和Y語(yǔ)言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線
2025-08-01 16:44
【摘要】梯形中常見(jiàn)輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2025-10-25 23:14
【摘要】梯形中常見(jiàn)輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2025-11-01 03:18
【摘要】中小學(xué)個(gè)性化輔導(dǎo)專(zhuān)家龍文教育學(xué)科教師輔導(dǎo)講義學(xué)員姓名:年級(jí):所在學(xué)校:教師:課題作輔助線的常用方法授課時(shí)間:教學(xué)目標(biāo)1構(gòu)造等腰三角形2構(gòu)造"全等三角形"重點(diǎn)、難點(diǎn)取線段中點(diǎn)構(gòu)造全等三角形。連接已知點(diǎn),構(gòu)造"全等三角形"或"等腰三角形"。
2025-07-26 12:39
【摘要】梯形的輔助線講學(xué)稿(2課時(shí))執(zhí)筆:許運(yùn)山審定:道橋中學(xué)數(shù)學(xué)組學(xué)習(xí)目標(biāo):會(huì)作梯形的輔助線,并運(yùn)用它解決梯形的問(wèn)題學(xué)習(xí)重點(diǎn):梯形的輔助線的作法.學(xué)習(xí)難點(diǎn):作梯形輔助線解決梯形問(wèn)題.學(xué)習(xí)過(guò)程:一、學(xué)前準(zhǔn)備:(5分鐘)、等腰梯形、直角梯形?等腰梯形有什么性質(zhì)??有什么性質(zhì)?二、合作探究:(30分鐘)問(wèn)題一:平移一腰,將兩腰轉(zhuǎn)化在一個(gè)三角形中,將兩底角轉(zhuǎn)
2025-08-20 17:18
【摘要】全等三角形問(wèn)題中常見(jiàn)的輔助線的作法常見(jiàn)輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”
2025-03-26 04:26
【摘要】第二講三大模型輔助線模塊一手拉手模型△ACD、△CBE為等邊△,A、C、B共線△ACD、△CBE為等邊△,AC、BC夾角任意△ACD、△CBE為頂角相同的等腰△ △ACD、△CBE可繞公共點(diǎn)任意旋轉(zhuǎn)例題1.如圖,等腰Rt△OAB,等腰Rt△OCD,∠AOB=∠COD=90o,M、N分別是AC、BD的中點(diǎn),求證:①∠1=∠2;②AC⊥BD;
2025-07-26 10:27
【摘要】同學(xué)們好梯形的常用輔助線的研究梯形的中位線的研究平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開(kāi)動(dòng)腦筋靈活應(yīng)用AB
2025-01-12 14:15
【摘要】全等三角形問(wèn)題中常見(jiàn)的輔助線的作法(有答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-06-19 22:58
【摘要】新思維心教育初二幾何常見(jiàn)輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線
2025-06-22 16:36
【摘要】平行四邊形輔助線平行四邊形(包括矩形、正方形、菱形)的兩組對(duì)邊、對(duì)角和對(duì)角線都具有某些相同性質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問(wèn)題轉(zhuǎn)化成常見(jiàn)的三角形、正方形等問(wèn)題處理,其常用方法有下列幾種,舉例簡(jiǎn)解如下:一、連對(duì)角線或平移對(duì)角線例1??如圖1,E是平行四邊形ABCD中AD延長(zhǎng)線上一點(diǎn),ED交BC
2025-06-19 22:55
【摘要】八年級(jí)數(shù)學(xué)上冊(cè)輔助線專(zhuān)題教學(xué)目標(biāo):掌握各種類(lèi)型的全等三角形的證明方法教學(xué)重點(diǎn):構(gòu)造全等三角形ZoQ0KC;tE^B101`教學(xué)難點(diǎn):如何巧妙作輔助線知識(shí)點(diǎn):(1)截長(zhǎng)補(bǔ)短型(二)中點(diǎn)線段倍長(zhǎng)問(wèn)題(三)蝴蝶形圖案解決定值問(wèn)題(四)角平分線與軸對(duì)稱(chēng)(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點(diǎn)例
2025-03-24 07:41
【摘要】專(zhuān)業(yè)資料分享金蘋(píng)果教育個(gè)性化教案:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。:用符號(hào)“∽”表示,讀作“相似于”。:相似三角形的對(duì)應(yīng)邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-16 06:57
【摘要】五種輔助線助你證全等在證明三角形全等時(shí),有時(shí)需添加輔助線,下面介紹證明全等時(shí)常見(jiàn)的五種輔助線,可以幫助你更好的學(xué)習(xí)。?一、截長(zhǎng)補(bǔ)短?一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長(zhǎng)補(bǔ)短的辦法:或在長(zhǎng)線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長(zhǎng)使其與長(zhǎng)線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-19 23:06