【摘要】專業(yè)資料分享圓中常見輔助線的做法一.遇到弦時(shí)(解決有關(guān)弦的問題時(shí)),或作垂直于弦的半徑(或直徑)或再連結(jié)過弦的端點(diǎn)的半徑。作用:①利用垂徑定理;②利用圓心角及其所對的弧、弦和弦心距之間的關(guān)系;③利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求
2025-07-03 03:14
【摘要】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2024-08-02 16:00
【摘要】全等三角形問題中常見的輔助線的作法(有答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2024-07-30 22:58
【摘要】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
2025-05-11 07:41
【摘要】全等三角形問題中常見的輔助線的作法總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形:遇到有二條線段長之和等于第三條線段的長,:有一個(gè)角為60度或120度的把該角添線后構(gòu)成等邊三角形、60度的作垂
2024-07-30 22:49
【摘要】全等三角形幾種常見輔助線精典題型一、截長補(bǔ)短1、已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明. 2、如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?3、如圖,AD⊥AB,CB⊥AB,DM=CM=,AD=,CB=,∠AMD=75°,∠
2025-05-11 07:39
【摘要】修辭常見的修辭手法有以下幾種:1、比喻比喻就是打比方,是用具體的、淺顯的、熟悉的、形象鮮明的事物去說明或描寫抽象的、深?yuàn)W的事物。這樣可以把事物的形象描寫得更生動(dòng)、具體。2、擬人擬人是借助想象力,把事物當(dāng)作人來寫。即賦予它們?nèi)说难孕?、思想、感情等。3、排比運(yùn)用三個(gè)或三個(gè)以上的結(jié)構(gòu)相同或相似,意思密切相關(guān),語氣一致的句子或詞組,排成一串。這樣的句子可以加強(qiáng)語言的氣勢,表達(dá)
2024-09-15 03:24
【摘要】小學(xué)常見的修辭手法有以下幾種: ?。?、比喻:就是打比方,是用具體的、淺顯的、熟悉的、形象鮮明的事物去說明或描寫抽象的、深?yuàn)W的事物。這樣可以把事物的形象描寫得更生動(dòng)、具體。 例句:,就像一片火紅的朝霞?! ??! ?,如同一條透明的藍(lán)綢子,靜靜地躺在大地的懷抱里?! 。?、擬人:是借助想象力,把事物當(dāng)作人來寫。即賦予它們?nèi)说难孕?、思想、感情等?! ±洌?。 ?似乎在對你微
2025-05-11 03:16
【摘要】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法“周長問題”的轉(zhuǎn)化Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形適用情況:圖中已經(jīng)存在兩個(gè)點(diǎn)—X和Y語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線
2024-09-11 16:44
【摘要】歲月的沉淀讓人生更加精彩!“角平分線問題”中的輔助線的添加技巧5高手出招1:角分線,分兩邊,對稱全等要記全。(牢記,角平分線就是一個(gè)對稱軸,所以可以將其中的一個(gè)△翻轉(zhuǎn)180度,構(gòu)造全等。)基本圖形例題:1.已知,CE、AD是△ABC
2024-08-04 04:31
2024-08-07 23:44
【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2024-12-21 23:14
【摘要】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-05-13 04:26
【摘要】中點(diǎn)常見的輔助線中點(diǎn)經(jīng)常所在的三角形:全等三角形等腰三角形:三線合一直角三角形:斜邊上的中線、三角形的中位線:一、一個(gè)中點(diǎn)常見的輔助線(1)利用中點(diǎn)構(gòu)建全等形:倍長中線至二倍,構(gòu)建全等三角形(2)有中點(diǎn)聯(lián)想直角三角形的斜邊上的中線(3)由中點(diǎn)聯(lián)想到等腰三角形的“三線合一”1、在△ABC中,AD是BC邊上的中線,若AB=2,AC=4,則AD的取值范圍是_
2025-05-09 11:22
【摘要】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對新圖形的分析,原問題順利獲解。有許多初中幾何常見輔助線作法歌訣,下面這一套是很好的:人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-05-22 03:02