【摘要】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個(gè)變化過程中,如果對應(yīng)的函數(shù)值無限接近于某個(gè)確定的常數(shù),那么這個(gè)確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應(yīng)的函數(shù)值任意接近于有限值自
2024-11-02 12:44
【摘要】一、夾逼準(zhǔn)則二、單調(diào)有界收斂準(zhǔn)則四、小結(jié)思考題極限存在準(zhǔn)則兩個(gè)重要極限第五節(jié)三、連續(xù)復(fù)利連續(xù)復(fù)利一、夾逼準(zhǔn)則準(zhǔn)則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2024-11-02 12:38
【摘要】第四節(jié)極限運(yùn)算法則定理1.0,)()(lim)3(;)]()(lim[)2(;)]()(lim[)1(,)(lim,)(lim??????????BBAxgxfBAxgxfBAxgxfBxgAxf其中則設(shè)證.)(lim,)(limBxgAxf???.0,0.)(,)
2025-07-10 04:02
【摘要】首頁末頁上一頁下一頁瞻前顧后演練廣場要點(diǎn)突破典例精析考題賞析2.2數(shù)列的極限二極限首頁末頁上一頁下一頁瞻前顧后演練廣場要點(diǎn)突破典例精析考題賞析首頁末頁上一頁下一頁瞻前顧后演練廣場要點(diǎn)突破典例精析考題賞析
2025-03-08 10:50
【摘要】第三章極限與函數(shù)的連續(xù)性一、數(shù)列的極限二、函數(shù)的極限三、函數(shù)的連續(xù)性四、無窮小量無窮大量的比較極限概念的萌芽可追溯至公元前300年,當(dāng)時(shí)我國著名哲學(xué)家莊子的著作中便有“一尺之棰,日取其半,萬世不竭”(莊子《天下篇》)的論述。在南北朝(429-500)時(shí)期,祖沖之利用極限的思想計(jì)算圓周率,取得了很大的成功。他利用圓內(nèi)接多邊
2025-06-17 18:12
【摘要】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個(gè)重要極限求極限的常用方法無窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無窮小的比較極限的性質(zhì)數(shù)列極限函
2024-11-02 12:39
【摘要】第七節(jié)函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性.),,(,),()(0000的增量為自變量在點(diǎn)稱內(nèi)有定義在設(shè)函數(shù)xxxxxUxxUxf???????.)()()(00的增量相應(yīng)于為稱xxfxfxxfy??????xy0xy00xxx??0)(xfy?x?xx??00xx?y?y?
2025-07-10 04:08
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-03-08 21:34
【摘要】第一講極限及其運(yùn)算法則定理:.)(lim)(lim)(lim000AxfxfAxfxxxxxx?????????例1、求下列函數(shù)極限。);(lim)()1(0xfxxfx??);(lim][)()2(1xfxxfx??).(lim010001s
2024-09-15 05:42
【摘要】數(shù)列極限一、概念的引入1、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”——?jiǎng)⒒詹シ耪呅蔚拿娣e正十二邊形的面積正形的面積2、截丈問題:“一尺之棰,日截其半,萬世不竭”二、數(shù)列的定義例如注意:.可看作一動點(diǎn)在數(shù)軸上依次取播放三、數(shù)列的極限觀
【摘要】微積分Ⅰ1第九章重積分§二重積分的計(jì)算一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計(jì)算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【摘要】數(shù)列極限的性質(zhì)定理1每個(gè)收斂的數(shù)列只有一個(gè)極限.證明例1在數(shù)列{xn}中任意抽取無限多項(xiàng)并保持這些項(xiàng)在原數(shù)列中的先后次序,得到的數(shù)列稱為子數(shù)列:定理2若數(shù)列xn收斂于a,則它的任一子數(shù)列也收斂,且極限也是a這一定理表明的是收斂的數(shù)列與其子數(shù)列之間的關(guān)系。由此可知,若數(shù)列xn有兩個(gè)子數(shù)列收斂于不
【摘要】2022/4/14寧德師范高等專科學(xué)校1微積分的創(chuàng)立林壽2022/4/14寧德師范高等??茖W(xué)校2——牛頓時(shí)代微積分的創(chuàng)立人類數(shù)學(xué)最偉大的發(fā)明近代始于對古典時(shí)代的復(fù)興,但人們很快看到,它遠(yuǎn)不是一場復(fù)興,而是一個(gè)嶄新的時(shí)代。2022/4/14寧德師范高等??茖W(xué)校3?科學(xué)思想
2025-05-31 23:38
【摘要】微積分基本定理(79)31、變速直線運(yùn)動問題變速直線運(yùn)動中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2025-01-25 00:51
【摘要】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計(jì)算機(jī)和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學(xué)習(xí),使學(xué)生對一元函數(shù)微分、積分有初步認(rèn)識和了解,使學(xué)生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運(yùn)算能力和綜合運(yùn)用所學(xué)知識分析問題、解決問題的能力
2025-03-08 21:35