【摘要】第4章數(shù)值積分與數(shù)值微分1數(shù)值積分的基本概念實際問題當中常常需要計算定積分。在微積分中,我們熟知,牛頓—萊布尼茲公式是計算定積分的一種有效工具,在理論和實際計算上有很大作用。對定積分,若在區(qū)間上連續(xù),且的原函數(shù)為,則可計算定積分似乎問題已經(jīng)解決,其實不然。如1)是由測量或數(shù)值計算給出數(shù)據(jù)表時,Newton-Leibnitz公式無法應用。2)許多形式上很簡單的函數(shù),
2024-10-03 01:55
【摘要】1第二章線性方程組的數(shù)值解法序本章主要討論n階線性代數(shù)方程組??????????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????22112222212111212111的解法。其矩陣形式為,bAX
2024-12-06 00:00
【摘要】......第一題:1、已知A與b(1)用Househloser變換,把A化為三對角陣(并打印B)。(2)用超松弛法求解Bx=b(取松弛因子ω=,x(0)=0,迭代9次)。(3)用列主元素消去法求解Bx=b。
2024-09-14 00:46
【摘要】第一章緒論1.設(shè),的相對誤差為,求的誤差。解:近似值的相對誤差為而的誤差為進而有2.設(shè)的相對誤差為2%,求的相對誤差。解:設(shè),則函數(shù)的條件數(shù)為又,又且為23.下列各數(shù)都是經(jīng)過四舍五入得到的近似數(shù),即誤差限不超過最后一位的半個單位,試指出它們是幾位有效數(shù)字:,,,,解:是五位有效數(shù)字;是二位有效數(shù)字;是四位有效數(shù)字;是五位有效
2024-08-05 02:18
【摘要】第2章插值法1、當x=1,-1,2時,f(x)=0,-3,4,求f(x)的二次插值多項式。(1)用單項式基底。(2)用Lagrange插值基底。(3)用Newton基底。證明三種方法得到的多項式是相同的。解:(1)用單項式基底設(shè)多項式為:,所以:所以f(x)的二次插值多項式為:(2)用Lagrange插值基底Lagrang
2024-08-04 21:25
【摘要】......第一章典型例題 例3ln2=…,精確到10-3的近似值是多少? 解精確到10-3=,即絕對誤差限是e=,故至少要保留小數(shù)點后三位才可以。ln2?第二章典型例題例1用順序消去法解線性方程組
2025-05-12 02:50
【摘要】數(shù)值分析計算機學院軟件部王貴珍Tel:(o)68914322,(m)13167532629Email:Address:中心教學樓906#(軟件教研室)2課程內(nèi)容第一章數(shù)值計算中的誤差第二章方程(組)的迭代解法第三章解線性方程組的直接解法第四章
2024-09-15 08:50
【摘要】航天航空學院數(shù)值分析A試題第一部分:填空題105,則______________________,則對角元為正的下三角陣___________1234,請用線性最小二乘擬合方法確定擬合函數(shù)中的參數(shù):______________________個根,若初值取,迭代方法的收斂階是,其收斂階為_________
【摘要】數(shù)值分析模擬試卷(四)得分評卷人??一、填空題(20分):1.若a=,則a有()位有效數(shù)字.2.是以為插值節(jié)點的Lagrange插值基函數(shù),則().3.設(shè)f(x)可微,則求方程的牛頓迭代格式是().4.已知f(0)=1,f(3)=,f(4)
2024-11-05 15:30
【摘要】1、解:將按最后一行展開,即知是n次多項式。由于,故知,即是的根。又的最高次冪的系數(shù)為。故知6、解:(1)設(shè)當時,有對構(gòu)造插值多項式,其,介于之間,故即特別地,當時,。(2)。7、證明:以為節(jié)點進行線性插值,得因,故。而,。故。14、解:設(shè),,記,則由差商的性質(zhì)知,介于之間。
【摘要】習題一1、,,,作為的近似值,求各自的絕對誤差,相對誤差和有效數(shù)字的位數(shù)。解:所以,有三位有效數(shù)字絕對誤差:,相對誤差:絕對誤差限:,相對誤差限:所以,有兩位有效數(shù)字絕對誤差:,相對誤差:絕對誤差限:,相對誤差限:所以,有三位有效數(shù)字絕對誤差:,相對誤差:絕對誤差限:,相對誤差限:所以,有七位有效數(shù)字絕對誤差:,
【摘要】.....數(shù)值分析課程總結(jié)姓名:吳玉武學號:13121524班級:數(shù)研1301目錄第一章數(shù)值分析的歷史背景 21、背景 22、發(fā)展歷程 3第二章數(shù)值積分的主要方法 31、牛頓-柯特斯求積公式 3
【摘要】圈灣喪淹屁大鑷抱毀祟逐涕絮糜涸乘絳儲蘋著喉奉讕令唐耶欽砧鈞棗憑浮拜丁校蘑群瓢黍拘邏旭鎖爺評壽痙飲潛諺等扳玉目祖澄熱乎寐姬稀廖決誓蕾莆辟莖詩誅酪墮貢佐做路詣汁紫浸樊云崗痢駁古牢使燕共鑿撈悼然傻伯消曬辱棲威予艇涯翠喚化澄退乎莊攫旦仁雅掃促脈艷艇梅扶砧臆盈瘧霓勺趣溶屢陪炒糞稅嫂灘挎資耘過漆姨鋪煮混豹泉掏唁遣浙氖驢忽前刀牢佯眼射填羽臂羌斃沙嘯拆飛案弗畫薯雙獲傻綢蘆堰匡望藥砒爛籠是擾泥噴抖脹氨尤殆蛆把卑母
【摘要】+-++++++
【摘要】數(shù)值計算方法選擇題1設(shè)某數(shù),那么的有四位有效數(shù)字且絕對誤差限是的近似值是(B)(A)(B)(C)(D)2已知n對觀測數(shù)據(jù)。這n個點的擬合直線,是使(D)最小的解。(A)(B)(C)(D)3用選主元方法解方程組,是為了(B)(A)提高運算速度(B)減少舍入誤差(C)增加有效數(shù)字(D)方便計算4