【摘要】第一節(jié)導(dǎo)數(shù)的概念及運(yùn)算第三單元導(dǎo)數(shù)及其應(yīng)用基礎(chǔ)梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為_(kāi)_______.(2)平均變化率是曲線陡峭程度的“________”,或者說(shuō),曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2025-01-15 17:12
【摘要】一個(gè)小球自由下落,它在下落3秒時(shí)的速度是多少??一個(gè)小球自由下落,求它從3s到(3+Δt)s這段時(shí)間內(nèi)的平均速度。變題:解:⑴先求從3s到(3+Δt)s這段時(shí)間內(nèi)的位移的增量Δs;記自由落體運(yùn)動(dòng)的方程為s=s(t)=·t2則s(3+Δt)=(3+Δt)2
2024-12-21 20:19
【摘要】.............123一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見(jiàn)函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex
2024-12-21 20:18
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、問(wèn)題的提出二、導(dǎo)數(shù)的定義三、由定義求導(dǎo)數(shù)四、導(dǎo)數(shù)的幾何意義五、可導(dǎo)與連續(xù)的關(guān)系一、問(wèn)題的提出1、瞬時(shí)速度問(wèn)題設(shè)運(yùn)動(dòng)物體的運(yùn)動(dòng)方程為s=s(t),則在t與t0之間平均速度Δt)s(tΔt)s(tΔtΔsv00????00)(
2025-03-01 10:10
【摘要】?2020NENU濟(jì)南九中高三數(shù)學(xué)備課組導(dǎo)數(shù)及導(dǎo)數(shù)的運(yùn)算?2020NENU濟(jì)南九中高三數(shù)學(xué)備課組,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵..y=c,y=x,y=x2,的導(dǎo)數(shù).
2025-01-12 08:48
【摘要】?2020NENU濟(jì)南九中高三數(shù)學(xué)備課組,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵..y=c,y=x,y=x2,的導(dǎo)數(shù).運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù).5.會(huì)使用導(dǎo)數(shù)公式表.
2025-01-14 08:49
【摘要】北京四中龍門(mén)網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子得到更好的教育2020/12/131導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::北京四中龍門(mén)網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducatio
2025-01-09 18:56
【摘要】§7.函數(shù)變化率在經(jīng)濟(jì)中的應(yīng)用1.幾個(gè)經(jīng)濟(jì)學(xué)中常用的經(jīng)濟(jì)函數(shù)函數(shù)的導(dǎo)數(shù),又稱(chēng)為函數(shù)的變化率,在經(jīng)濟(jì)上有很多的應(yīng)用。(1)成本函數(shù)(2)需求函數(shù)(3)收益函數(shù)(4)利潤(rùn)函數(shù)2.經(jīng)濟(jì)學(xué)中的邊際函數(shù)在經(jīng)濟(jì)管理上,往往需要判斷在現(xiàn)有的生產(chǎn)情況下,再增加生產(chǎn)量在經(jīng)濟(jì)上是否有利。經(jīng)濟(jì)管理人員
2025-06-16 00:34
【摘要】導(dǎo)數(shù)的綜合應(yīng)用預(yù)測(cè)數(shù)據(jù)庫(kù)知識(shí)數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)經(jīng)典例題備選1~56~1011~12知識(shí)數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)預(yù)測(cè)數(shù)據(jù)庫(kù)經(jīng)典例題備選1~56~1011~12知識(shí)數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)預(yù)測(cè)數(shù)據(jù)庫(kù)經(jīng)典例題備選1~56~1011~12知識(shí)數(shù)據(jù)庫(kù)技能數(shù)據(jù)庫(kù)
2025-04-10 12:14
【摘要】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2024-12-21 19:25
【摘要】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點(diǎn):一.一階、二階偏導(dǎo)數(shù)計(jì)算三.熟練掌握偏導(dǎo)數(shù)
2025-03-03 07:37
【摘要】一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開(kāi),利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問(wèn)題
2025-06-15 23:00
【摘要】第二章微積分學(xué)的創(chuàng)始人:德國(guó)數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度都是描述物質(zhì)運(yùn)動(dòng)的工具(從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國(guó)數(shù)學(xué)家Ferma在研究極值問(wèn)題中提出.英國(guó)數(shù)學(xué)家Newton一、引例二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義
2024-12-06 04:38
【摘要】要點(diǎn)梳理在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f′(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.f′(x)≥0f(x)為;f′(x)≤0f(x)為.§導(dǎo)數(shù)的應(yīng)用增函數(shù)減函數(shù)基礎(chǔ)知識(shí)自主學(xué)習(xí)(1)判斷
【摘要】作業(yè)課本93頁(yè)A組4,6B組2線上講師線上講師啊?大家手忙腳亂、累得要死の時(shí)候您別曉得過(guò)來(lái)當(dāng)差/那會(huì)兒全都收拾停當(dāng)咯您才露面/您那是打算‘邀功請(qǐng)賞’來(lái)咯?/水清雖然壹見(jiàn)珊瑚就頭疼別已/可是更是生怕她別管別顧地當(dāng)著月影の面開(kāi)口說(shuō)起那件事情/于是趕快對(duì)月影說(shuō)道:
2024-09-26 01:03