【摘要】一、橢圓的范圍oxy由11122222222?????byaxbyax和即byax??和說(shuō)明:橢圓位于矩形之中。二、橢圓的對(duì)稱(chēng)性)0(12222????babyax在之中,把-換成-,方程不變,說(shuō)明:
2024-09-11 15:06
【摘要】莘縣第二中學(xué)高二數(shù)學(xué)◆選修1-1◆第2章橢圓的簡(jiǎn)單幾何性質(zhì)導(dǎo)學(xué)案編寫(xiě):張愛(ài)紅審核:張翠蘭§(第1課時(shí))班級(jí)姓名組別代碼評(píng)價(jià)【使用說(shuō)明與學(xué)法指導(dǎo)】1.在自習(xí)或自主時(shí)間通過(guò)閱讀課本用20分鐘把預(yù)習(xí)探究案中的所有知識(shí)完成。訓(xùn)練案在自習(xí)或自主時(shí)間完成。2.重點(diǎn)預(yù)習(xí)
2024-09-27 14:17
【摘要】質(zhì)D復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2024-09-04 14:44
【摘要】標(biāo)準(zhǔn)方程范圍對(duì)稱(chēng)性頂點(diǎn)坐標(biāo)焦點(diǎn)坐標(biāo)半軸長(zhǎng)離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對(duì)稱(chēng);關(guān)于原點(diǎn)成中心對(duì)稱(chēng)(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長(zhǎng)半軸
2025-07-13 00:42
2025-07-13 00:31
【摘要】課題:橢圓的簡(jiǎn)單幾何性質(zhì)設(shè)計(jì)意圖:本節(jié)內(nèi)容是橢圓的簡(jiǎn)單幾何性質(zhì),是在學(xué)習(xí)了橢圓的定義和標(biāo)準(zhǔn)方程之后展開(kāi)的,它是繼續(xù)學(xué)習(xí)雙曲線(xiàn)、拋物線(xiàn)的幾何性質(zhì)的基礎(chǔ)。因此本節(jié)內(nèi)容起到一個(gè)鞏固舊知,熟練方法,拓展新知的承上啟下的作用,是發(fā)展學(xué)生自主學(xué)習(xí)能力,培養(yǎng)創(chuàng)新能力的好素材。本教案的設(shè)計(jì)遵循啟發(fā)式的教學(xué)原則,以培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、實(shí)驗(yàn)、探究、驗(yàn)證與交流等數(shù)學(xué)活動(dòng)能力。教學(xué)目
2025-06-04 04:22
【摘要】《橢圓的簡(jiǎn)單幾何性質(zhì)》教學(xué)設(shè)計(jì)【教學(xué)目標(biāo)】:(1).使學(xué)生掌握橢圓的性質(zhì),能根據(jù)性質(zhì)正確地作出橢圓草圖;掌握橢圓中a、b、c的幾何意義及相互關(guān)系;(2)通過(guò)對(duì)橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生知道在解析幾何中是怎樣用代數(shù)方法研究曲線(xiàn)性質(zhì)的,逐步領(lǐng)會(huì)解析法(坐標(biāo)法)的思想。(3)能利用橢圓的性質(zhì)解決實(shí)際問(wèn)題。:培養(yǎng)學(xué)生觀察、分析、抽象、概括的邏輯思維能力和運(yùn)用數(shù)形
2025-06-04 04:14
【摘要】典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒(méi)有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長(zhǎng)軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說(shuō)明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱(chēng)軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個(gè)
2025-05-12 04:50
【摘要】橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)1.橢圓定義:(1)第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動(dòng)點(diǎn)的軌跡叫橢圓,其中兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn).當(dāng)時(shí),的軌跡為橢圓;;當(dāng)時(shí),的軌跡不存在;當(dāng)時(shí),的軌跡為以為端點(diǎn)的線(xiàn)段(2)橢圓的第二定義:平面內(nèi)到定點(diǎn)與定直線(xiàn)(定點(diǎn)不在定直線(xiàn)上)的距離之比是常數(shù)()的點(diǎn)的軌跡為橢圓(利用第二定義,可以實(shí)現(xiàn)橢圓
2024-08-25 00:24
【摘要】橢圓的幾何性質(zhì)一、概念及性質(zhì)“范圍、對(duì)稱(chēng)性、頂點(diǎn)、軸長(zhǎng)、焦距、離心率及范圍、a,b,c的關(guān)系”;:::主要用來(lái)求離心率的取值范圍,對(duì)于此問(wèn)題也可以用下列性質(zhì)求解:.::【注】:橢圓的幾何性質(zhì)是高考的熱點(diǎn),高考中多以小題出現(xiàn),試題難度一般較大,高考對(duì)橢圓幾何性質(zhì)的考查主要有以下三個(gè)命題角度:(1)根據(jù)橢圓的性質(zhì)求參數(shù)的值或范圍;(2)由性質(zhì)寫(xiě)橢圓的標(biāo)準(zhǔn)方程;
【摘要】出題人:李秋天陳繼波鄒玉超【學(xué)習(xí)目標(biāo)】1.熟練掌握橢圓的范圍,對(duì)稱(chēng)性,頂點(diǎn)等簡(jiǎn)單幾何性質(zhì)2.掌握標(biāo)準(zhǔn)方程中的幾何意義,以及的相互關(guān)系3.理解、掌握坐標(biāo)法中根據(jù)曲線(xiàn)的方程研究曲線(xiàn)的幾何性質(zhì)的一般方法【學(xué)習(xí)重點(diǎn)】:橢圓的幾何性質(zhì)【學(xué)習(xí)難點(diǎn)】:如何貫徹
2024-09-03 04:51
【摘要】復(fù)習(xí)::在同一平面內(nèi),到兩定點(diǎn)F1、F2的距離和為常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓。:22221(0)xyabab????22221(0)yxabab????a,b,c的關(guān)系是:a2=b2+c2一、橢圓的范圍oxy由122
2025-03-08 22:19
【摘要】第一節(jié)橢圓的標(biāo)準(zhǔn)方程考點(diǎn)一求橢圓的標(biāo)準(zhǔn)方程【思路點(diǎn)撥】先判斷焦點(diǎn)位置,確定出適合題意的橢圓標(biāo)準(zhǔn)方程的形式,最后由條件確定出a和b即可.【例1】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別為(-4,0)和(4,0),且橢圓經(jīng)過(guò)點(diǎn)(5,0);(2)焦點(diǎn)在y軸上,且經(jīng)過(guò)兩個(gè)點(diǎn)(0,2)和(1,0)。變∶根據(jù)下列條件,求橢圓
2024-08-25 02:23
【摘要】課題:橢圓的定義及幾何性質(zhì)汝城一中高三文科數(shù)學(xué)組(1)橢圓的第一定義為:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)(2)橢圓的第二定義為:平面內(nèi)到一定點(diǎn)F與到一定直線(xiàn)l的距離之比為一常數(shù)e(0<e<1)的點(diǎn)的軌跡叫做橢圓一、基礎(chǔ)知識(shí)復(fù)習(xí)標(biāo)準(zhǔn)方程
2025-01-12 06:05
【摘要】欄目導(dǎo)引新知初探思維啟動(dòng)典題例證技法歸納知能演練輕松闖關(guān)第二章圓錐曲線(xiàn)與方程2.橢圓的簡(jiǎn)單幾何性質(zhì)習(xí)題課第1課時(shí)橢圓的簡(jiǎn)單幾何性質(zhì)欄目導(dǎo)引新知初探思維啟動(dòng)典題例證技法歸納知能演練輕松闖關(guān)第二章圓錐曲線(xiàn)與方程學(xué)習(xí)導(dǎo)航
2024-09-04 10:50