freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理的證明方法共5則-展示頁(yè)

2024-11-16 04:55本頁(yè)面
  

【正文】 的證明方法勾股定理的證明方法。這種證明方法由于用了梯形面積公式和三角形面積公式,從而使證明更加簡(jiǎn)潔,它在數(shù)學(xué)史上被傳為佳話。A為直角。過(guò)A點(diǎn)畫(huà)一直線AL使其垂直於DE并交DE於L,交BC於M。所以正方形ABFG的面積=2180。DABD的面積=長(zhǎng)方形BMLD的面積。即正方形BCED的面積=正方形ABFG的面積+正方形ACKH的面積,亦即是AB2+AC2=BC2。這個(gè)證明巧妙地運(yùn)用了全等三角形和三角形面積與長(zhǎng)方形面積的關(guān)系來(lái)進(jìn)行。這個(gè)證明是出自古希臘大數(shù)學(xué)歐幾里得之手。他曾經(jīng)在古希臘的文化中心亞歷山大城工作,并完成了著作《幾何原本》。而書(shū)中的第一卷命題47,就記載著以上的一個(gè)對(duì)勾股定理的證明。設(shè)直角三角形的斜邊長(zhǎng)度為c,其余兩邊的長(zhǎng)度為a和b,則由於大正方形的面積應(yīng)該等於4個(gè)直角三角形和中間淺黃色正方形的面積之和,所以我們有(a+b)2=4(1/2ab)+c2展開(kāi)得a2+2ab+b2=2ab+c2化簡(jiǎn)得a2+b2=c2由此得知勾股定理成立。這個(gè)定理有十分悠久的歷史,兩千多年來(lái),人們對(duì)勾股定理的證明頗感興趣,因?yàn)檫@個(gè)定理太貼近人們的生活實(shí)際,以至于古往今來(lái),下至平民百姓,上至帝王總統(tǒng)都愿意探討和研究它的證明.下面結(jié)合幾種圖形來(lái)進(jìn)行證明。右邊的正方形是由1個(gè)邊長(zhǎng)為的正方形和4個(gè)直角邊分別為、斜邊為的直角三角形拼成的。在西方,人們認(rèn)為是畢達(dá)哥拉斯最早發(fā)現(xiàn)并證明這一定理的,但遺憾的是,他的證明方法已經(jīng)失傳,這是傳說(shuō)中的證明方法,這種證明方法簡(jiǎn)單、直觀、易懂。因?yàn)檫呴L(zhǎng)為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡(jiǎn)得。因?yàn)檫呴L(zhǎng)為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡(jiǎn)得。三、美國(guó)第20任總統(tǒng)茄菲爾德的證法(圖3)這個(gè)直角梯形是由2個(gè)直角邊分別為、斜邊為 的直角三角形和1個(gè)直角邊為的等腰直角三角形拼成的。這種證明方法由于用了梯形面積公式和三角形面積公式,從而使證明更加簡(jiǎn)潔,它在數(shù)學(xué)史上被傳為佳話。(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱:,;(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4)請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的兩個(gè)勾股四邊形OAMB ;(3)如圖2,將△ABC繞頂點(diǎn)B按順時(shí)
點(diǎn)擊復(fù)制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1