【摘要】第一篇:構造函數(shù)證明不等式 構造函數(shù)證明不等式 構造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【摘要】第一篇:構造函數(shù)證明數(shù)列不等式 構造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【摘要】2016廣外高三理科數(shù)學第二輪復習JGH4月7日構造函數(shù)法證明不等式一、教學目標::利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性和最值來證明不等式.:引導學生鉆研教材,歸納求導的四則運算法則的應用,通過類比,化歸思想轉換命題,抓住條件與結論的結構形式,合理構造函數(shù).:通過這部分內容的學習,培養(yǎng)學生的分析能力
2024-08-07 22:06
【摘要】第一篇:不等式證明之函數(shù)構造法(顏秀華) 不等式證明之函數(shù)構造法 作者顏秀華 (湖南省,長沙市第七中學,郵編410003) 【摘要】利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性來證明不等式是...
2024-10-26 05:25
【摘要】第一篇:對構造函數(shù)法證明不等式的再研究 龍源期刊網://. 對構造函數(shù)法證明不等式的再研究 作者:時英雄 來源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構造法證明不等式的九個...
2024-10-26 17:38
【摘要】第一篇:導數(shù)證明不等式構造函數(shù)法類別(學生版) 導數(shù)證明不等式構造函數(shù)法類別 1、移項法構造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構造函...
2024-10-26 15:00
【摘要】第一篇:構造法與放縮法在不等式證明中的運用 構造法與放縮法在不等式證明中的運用 例1:設函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調區(qū)間; (2)證明:當nm...
2024-10-28 03:31
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【摘要】第一篇:2014年數(shù)學高考專題--用構造局部不等式法證明不等式[模版] 2014年數(shù)學高考專題--用構造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構造若干個結構完全相同的...
2024-10-26 22:06
【摘要】第一篇:賦值法證明不等式 賦值法證明不等式的有關問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當0 222a(b-a)...
2024-10-29 06:45
【摘要】第一篇:構造函數(shù),利用導數(shù)證明不等式 構造函數(shù),利用導數(shù)證明不等式 湖北省天門中學薛德斌2010年10月 例 1、設當x?[a,b]時,f/(x)g/(x),求證:當x?[a,b]時,f(x...
2024-10-26 21:14
【摘要】第一篇:構造函數(shù)法證明不等式的八種方法 構造函數(shù)法證明不等式的八種方法 利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。 解...
2024-10-28 04:52
【摘要】第一篇:構造函數(shù)證明數(shù)列不等式答案 構造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構造函數(shù)有l(wèi)...
2024-10-28 06:10
【摘要】第一篇:構造函數(shù),結合導數(shù)證明不等式 構造函數(shù),結合導數(shù)證明不等式 摘要:運用導數(shù)法證明不等式首先要構建函數(shù),以函數(shù)作為載體可以用移項作差,直接構造;合理變形,等價構造;分析(條件)結論,特征構造...
2024-10-28 05:32