freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

對(duì)構(gòu)造函數(shù)法證明不等式的再研究-展示頁(yè)

2024-10-26 17:38本頁(yè)面
  

【正文】 式)【例7】證明:當(dāng)x0時(shí),(1+x)1+xe1+2.(2007年,安徽卷)設(shè)a179。x. x+1二、作差法構(gòu)造函數(shù)證明【例2】已知函數(shù)f(x)=的圖象的下方.2312x+lnx,求證:在區(qū)間(1 ,+165。第二篇:構(gòu)造法證明函數(shù)不等式構(gòu)造法證明函數(shù)不等式利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn).解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個(gè)可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵.一、移項(xiàng)法構(gòu)造函數(shù)【例1】已知函數(shù)f(x)=ln(x+1)x,求證:當(dāng)x1時(shí),恒有11163。第一篇:對(duì)構(gòu)造函數(shù)法證明不等式的再研究龍?jiān)雌诳W(wǎng) ://.對(duì)構(gòu)造函數(shù)法證明不等式的再研究作者:時(shí)英雄來(lái)源:《理科考試研究高中》2013年第10期某刊一文闡述了構(gòu)造法證明不等式的九個(gè)模型,筆者深受啟發(fā),對(duì)其中作者介紹的構(gòu)造函數(shù)模型進(jìn)行了挖掘,著重對(duì)構(gòu)造函數(shù)模型,利用函數(shù)的有關(guān)性質(zhì)解決不等式問題進(jìn)行了再研究,以供大家參考。ln(x+1)163。)上,函數(shù)f(x)的圖象在函數(shù)g(x)=x32三、換元法構(gòu)造函數(shù)證明【例3】(2007年山東卷)證明:對(duì)任意的正整數(shù)n,不等式ln(111+1)23都成立. nnn四、從條件特征入手構(gòu)造函數(shù)證明【例4】若函數(shù)y=f(x)在R上可導(dǎo),且滿足不等式xf39。0,f(x)=x1ln2x+2alnx.求證:當(dāng)x1時(shí),恒有xln2x2alnx+1.(2007年,安徽卷)已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=1x12x+2ax,g(x)=3a2lnx+b,其中2a0,且b= 52a3a2lna,求證:f(x)179。1. 1+xa(2007年,陜西卷)f(x)是定義在(0 , +165。(x)f(x)163。bf(a)B.bf(a)163。f(b)D.bf(b)163。(x)=,∴當(dāng)1x0時(shí),f162。(1 , 0)上為增函數(shù);當(dāng)x0時(shí),f162。(0 , +165。);于是函數(shù)f(x)在(1 , +165。f(0)=0,即ln(x+1)x163。x(右面得證).現(xiàn)證左面,令g(x)=ln(x+1)+11x1=1,則g162。(1 , 0)時(shí),g39。(0 , +165。(x)0,即g(x)在x206。(0 , +165。)上的最小值為g(x)min=g(0)=0,11179。ln(x+1)163。1.綜上可知:當(dāng)x1時(shí),有x+1x+1∴當(dāng)x1時(shí),g(x)179。f(a)(或f(x)179。不等式f(x)g(x)在(1 ,+165。)上,恒有x2+lnxx3成立,23231設(shè)F(x)=g(x)f(x),x206。),考慮到F(1)=0,要證不等式轉(zhuǎn)化變?yōu)椋?立問題,即當(dāng)x1時(shí),F(xiàn)(x)F(1),這只要證明:g(x)在區(qū)間(1 ,+165。(x)=2xx=;當(dāng)x1時(shí),F(xiàn)39。)上為增函數(shù),∴F(x)F(1)=10,∴當(dāng)x1時(shí),g(x)f(x)0,即6f(x)g(x),故在區(qū)間(1,+165。(x)=3x2x+=x+1x+1322在x206。)上恒正,∴函數(shù)h(x)在(0 , +165。(0 , +165。(0 , +165。(x)0即可.例4.【解析】由已知:xf39。(x)=xf39。(x)+f(x),容易想到是一個(gè)積的導(dǎo)數(shù),從而可以構(gòu)造函數(shù)F(x)=xf(x),求導(dǎo)即可完成證明.若題目中的條件改為xf162。(x)f(x),要想到是一個(gè)商的導(dǎo)數(shù)的分子,平時(shí)解題多注意總結(jié).例5.【分析】 對(duì)于第(2)小問,絕大部分的學(xué)生都會(huì)望而生畏.學(xué)生的盲點(diǎn)也主要就在對(duì)所給函數(shù)用不上.如果能挖掘一下所給函數(shù)與所證不等式間的聯(lián)系,想一想大小關(guān)系又與函數(shù)的單調(diào)性密切相關(guān),由此就可過(guò)渡到根據(jù)所要證的不等式構(gòu)造恰當(dāng)?shù)暮瘮?shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,借助單調(diào)性比較函數(shù)值的大小,以期達(dá)到證明不等式的目的.(2)對(duì)g(x)=xlnx求導(dǎo),則g39。(x)=g39。=lnxln. 222當(dāng)0xa時(shí),F(xiàn)39。(x)0,因此F(x)在(a , +165。(x)=lnxlna+xG39。)2a+b)(ba)ln2. 2上為減函數(shù),∵G(a)=0,ba,∴G(b)0,即g(a)+g(b)2g(例6.【解析】(1)f39。(x)179。R恒成立,即a179。R恒成立;記g(x)=xex,則g39。(x)0;當(dāng)x1時(shí),g39。 , 1)上為增函數(shù),在(1 , +165。即a的取值范圍是[ , +165。(x)=exx1,2令h(x)=F39。(x)=ex1;當(dāng)x0時(shí),h39。)上為增函數(shù),又h(x)在x=0處連續(xù),∴h(x)h(0)=0,即F39。)上為增函數(shù),又F(x)在x=0處連續(xù),∴F(x)F(0)=0,即f(x)1+x.【點(diǎn)評(píng)】當(dāng)函數(shù)取最大(或最?。┲禃r(shí)不等式都成立,可得該不等式恒成立,從而把不等式的恒成立問題可轉(zhuǎn)化為求函數(shù)最值問題.不等式恒成立問題,一般都會(huì)涉及到求參數(shù)范圍,往往把變量分離后可以轉(zhuǎn)化為mf(x)(或mf(x))恒成立,于是m大于f(x)的最大值(或m小于f(x)的最小值),從而把不等式恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題.因此,利用導(dǎo)數(shù)求函數(shù)最 值是解決不等式恒成立問題的一種重要方法.例7.【解析】 對(duì)不等式兩邊取對(duì)數(shù)得(1+)ln(1+x)1+1xx,化簡(jiǎn)為2(1+x)ln(1+x)2x+x2,2(l1+x),設(shè)輔助函數(shù)f(x)=2x+x22(1+x)ln(
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1