freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

構(gòu)造函數(shù)法證明不等式的八種方法[最終定稿]-展示頁

2024-10-28 05:26本頁面
  

【正文】 ≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤恒成立,求實(shí)數(shù)a的取值范圍;(x)=x+2ax﹣alnx﹣1(1)a≠0時(shí),討論函數(shù)f(x)的單調(diào)性;(2)若不等式2xlnx≤xf′(x)+a+1恒成立,其中f′(x)f(x)是f(x)的導(dǎo)數(shù),求實(shí)數(shù)a的取值范圍.(x)=ln221+-x(Ⅰ)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;x3(Ⅱ)求證:當(dāng)x∈(0,1)時(shí),f(x)≥2(x+)。1f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf162。0,f(x)=x1lnx+2alnx求證:當(dāng)x1時(shí),恒有xln2x2alnx+1nmba3已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=12x+2ax,g(x)=3a2lnx+b,其中a0,且2b= 52a3a2lna,求證:f(x)179。Qab ∴F(a)F(b)即 af(a)bf(b)構(gòu)造二階導(dǎo)數(shù)函數(shù)證明導(dǎo)數(shù)的單調(diào)性x例.已知函數(shù)f(x)=ae12x 2(1)若f(x)在R上為增函數(shù),求a的取值范圍。(x)+f(x)0,從而F(x)在R上為增函數(shù)。(x)-f(x)恒成立,且常數(shù)a,b滿足ab,求證:.a(chǎn)f(a)bf(b)【解】由已知 xf162。(0,+165。(0,+165。)上恒正,x+1x+12所以函數(shù)h(x)在(0,+165。(x)=3x2x+在x206。)上,函數(shù)f(x)的圖象在函數(shù)g(x)=換元法構(gòu)造函數(shù)證明【例3】證明:對(duì)任意的正整數(shù)n,不等式ln(只需令10 623x的圖象的下方。(x)=x從而F(x)在(1,+165。)上,函數(shù)f(x)的圖象在函數(shù)2g(x)= 23x的圖象的下方; 32312xxlnx,32【解】設(shè)F(x)=g(x)f(x),即F(x)=1(x1)(2x2+x+1)則F162。1,綜上可知,當(dāng)x1時(shí),有x+1x+1∴當(dāng)x1時(shí),g(x)179。ln(x+1)163。)上的最小值為g(x)min=g(0)=0,11179。(0,+165。(x)0,即g(x)在x206。(0,+165。(x)0。(x)= =22x+1x+1(x+1)(x+1)當(dāng)x206。0∴l(xiāng)n(x+1)163。)上的最大值為f(x)max=f(0)=0,因此,當(dāng)x1時(shí),f(x)163。)上為減函數(shù) 故函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,0),單調(diào)遞減區(qū)間(0,+165。(x)0,即f(x)在x206。(x)0,即f(x)在x206。ln(x+1)163。第一篇:構(gòu)造函數(shù)法證明不等式的八種方法導(dǎo)數(shù)之構(gòu)造函數(shù)法證明不等式移項(xiàng)法構(gòu)造函數(shù) 【例1】 已知函數(shù)f(x)=ln(x+1)x,求證:當(dāng)x1時(shí),恒有1【解】f162。(x)=1163。x x+11x1= x+1x+1∴當(dāng)1x0時(shí),f162。(1,0)上為增函數(shù)當(dāng)x0時(shí),f162。(0,+165。)于是函數(shù)f(x)在(1,+165。f(0)=0,即ln(x+1)x163。x(右面得證)現(xiàn)證左面,令g(x)=ln(x+1)+111x1,則g162。(1,0)時(shí),g162。當(dāng)x206。)時(shí),g162。(1,0)上為減函數(shù),在x206。)上為增函數(shù),故函數(shù)g(x)在(1,+165。0 x+1111163。x ∴l(xiāng)n(x+1)179。g(0)=0,即ln(x+1)+作差法構(gòu)造函數(shù)證明 【例2】已知函數(shù)f(x)=12x+:在區(qū)間(1,+165。(x)=2xx=xx21(x1)(2x2+x+1)當(dāng)x1時(shí),F(xiàn)162。)上為增函數(shù),∴F(x)F(1)=∴當(dāng)x1時(shí) g(x)f(x)0,即f(x)g(x),故在區(qū)間(1,+165。3111+1)23 =x n32【解】令h(x)=xx+ln(x+1),13x3+(x1)2=則h162。(0,+165。)上單調(diào)遞增,∴x206。)時(shí),恒有h(x)h(0)=0,即xx+ln(x+1)0,∴l(xiāng)n(x+1)xx 對(duì)任意正整數(shù)n,取x=32231111206。),則有l(wèi)n(+1)23 nnnn從條件特征入手構(gòu)造函數(shù)證明【例4】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf162。(x)+f(x)0 ∴構(gòu)造函數(shù) F(x)=xf(x),則F(x)= xf162。39。(2)若a=1,求證:x>0時(shí),f(x)1+x x解:(1)f′(x)= ae-x,∵f(x)在R上為增函數(shù),∴f′(x)≥0對(duì)x∈R恒成立,x即a≥xe對(duì)x∈R恒成立 記g(x)=xe,則g′(x)=e-xe=(1x)e,當(dāng)x>1時(shí),g′(x)<0,當(dāng)x<1時(shí),g′(x)>0. 知g(x)在(∞,1)上為增函數(shù),在(1,+ ∞)上為減函數(shù), ∴g(x)在x=1時(shí),取得最大值,即g(x)max=g(1)=1/e, ∴a≥1/e, 即a的取值范圍是[1/e, + ∞)x(2)記F(X)=f(x)-(1+x)=exxxxx12x1x(x0)2則F′(x)=e1x, xx令h(x)= F′(x)=e1x,則h′(x)=e1 當(dāng)x0時(shí), h′(x)0, ∴h(x)在(0,+ ∞)上為增函數(shù), 又h(x)在x=0處連續(xù), ∴h(x)h(0)=0 即F′(x)0 ,∴F(x)在(0,+ ∞)上為增函數(shù),又F(x)在x=0處連續(xù), ∴F(x)F(0)=0,即f(x)1+x.(選用于冪指數(shù)函數(shù)不等式)例:證明當(dāng)x0時(shí),(1+x)1+1xe1+x2例:證明當(dāng)bae,證明ab例:已知m、n都是正整數(shù),且1mn,證明:(1+m)(1+n)強(qiáng)化訓(xùn)練:設(shè)a179。g(x)2x,求證:對(duì)任意的正數(shù)a、b,1+x已知函數(shù)f(x)=ln(1+x)恒有l(wèi)nalnb179。(x)f(x)≤0,對(duì)任意正數(shù)a、b,若a b,則必有()(A)af(b)≤bf(a)(C)af(a)≤f(b)(B)bf(a)≤af(b)(D)bf(b)≤f(a)mx2 5.設(shè)函數(shù)f(x)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1