【摘要】12.掌握利用導數(shù)解決實際生活中的優(yōu)化問題的方法和步驟,如用料最少、費用最低、消耗最省、利潤最大、效率最高等..掌握導數(shù)與不等式、幾何等綜合問題的解題方法.????21(0)31
2024-10-10 08:09
【摘要】第一篇:利用導數(shù)證明不等式的常見題型經典 利用導數(shù)證明不等式的常見題型及解題技巧 技巧精髓 1、利用導數(shù)研究函數(shù)的單調性,再由單調性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高...
2024-10-27 18:01
【摘要】......二輪專題(十一)導數(shù)與不等式證明【學習目標】1.會利用導數(shù)證明不等式.2.掌握常用的證明方法.【知識回顧】一級排查:應知應會,利用新函數(shù)的單調性或最值解決不等式的證明問題.比如要證明
2025-04-26 00:39
【摘要】第一篇:導數(shù)證明不等式 導數(shù)證明不等式 一、當x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2024-10-26 09:50
【摘要】構造函數(shù)解不等式1.(2015全國2理科).設函數(shù)f’(x)是奇函數(shù)的導函數(shù),f(-1)=0,當時,,則使得成立的x的取值范圍是(A)(B)(C)(D)2若定義在上的函數(shù)是奇函數(shù),,當>0時,<0,恒成立,則不等式>0的解集ABCD.3定義在上的函數(shù)滿足:則不等式(其中為自然對數(shù)的底數(shù))的解集為(
2025-06-29 04:07
【摘要】第一篇:利用導數(shù)證明不等式的四種常用方法 利用導數(shù)證明不等式的四種常用方法 楊玉新 (紹興文理學院數(shù)學系,浙江紹興312000) 摘要:通過舉例闡述了用導數(shù)證明不等式的四種方法,:導數(shù);單調性...
2024-10-30 22:29
【摘要】函數(shù)導數(shù)與不等式專題一.利用切線與導數(shù)之間的聯(lián)系解決不等式有關問題1.(2013年高考四川)已知函數(shù),其中是實數(shù).設,為該函數(shù)圖象上的兩點,且.(1)指出函數(shù)的單調區(qū)間;(2)若函數(shù)的圖象在點處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-04-02 12:16
【摘要】第一篇:構造函數(shù)處理不等式問題 構造函數(shù)處理不等式問題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質與函數(shù)有關,該題就可考慮運用構造函數(shù)的方法求解。構造函數(shù),...
2024-10-31 14:46
【摘要】利用導數(shù)證明不等式的兩種通法吉林省長春市東北師范大學附屬實驗學校金鐘植岳海學利用導數(shù)證明不等式是高考中的一個熱點問題,利用導數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關的兩種通法用列舉的方式歸納和總結。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉化為證明(),進而構造輔助函數(shù),然后利用導數(shù)證明函數(shù)的單調性或
2025-06-29 04:22
【摘要】第一篇:一題多解之利用導數(shù)證明不等式問題 一題多解之利用導數(shù)證明不等式問題 構造函數(shù)證明不等式的方法: (1)對于(或可化為)左右兩邊結構相同的不等式,構造函數(shù)f(x),使原不等式成為形如f(a...
2024-10-29 14:44
【摘要】第一篇:例談利用導數(shù)證明不等式的方法 例談利用導數(shù)證明不等式的方法 廣東肇慶中學張本龍 【內容摘要】導數(shù)作為工具是一道靚麗的風景線,也是近幾年高考的一個新熱點,在某些不等式的證明中,若能及時地構...
2024-10-27 14:17
【摘要】第一篇:導數(shù)證明不等式的幾個方法 導數(shù)證明不等式的幾個方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當x-1時,恒有 1-1£ln(...
2024-10-28 01:40
【摘要】利用導數(shù)證明不等式的常見題型及解題技巧趣題引入已知函數(shù)設,證明:分析:主要考查利用導數(shù)證明不等式的能力。證明:,設當時,當時,即在上為減函數(shù),在上為增函數(shù)∴,又∴,即設當時,,因此在區(qū)間上為減函數(shù);因為,又∴,即故綜上可知,當時,本題在設輔助函數(shù)時,考慮到不等式涉及的變量是區(qū)間的兩個端點,因此,設輔助
2025-04-02 12:45
【摘要】利用導數(shù)證明不等式的兩種通法吉林省長春市東北師范大學附屬實驗學校金鐘植岳海學利用導數(shù)證明不等式是高考中的一個熱點問題,利用導數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關的兩種通法用列舉的方式歸納和總結。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉化為證明(),進而構造輔助函數(shù),然后利用導數(shù)證明函數(shù)的單調
2025-06-29 06:49
【摘要】利用導數(shù)證明不等式不等式的證明問題是中學數(shù)學教學的一個難點,傳統(tǒng)證明不等式的方法技巧性強,多數(shù)學生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導數(shù)證明不等式也時有出現(xiàn),但現(xiàn)行教材對這一問題沒有展開研究,,方法簡捷,操作性強,易被學生掌握。下面介紹利用單調性、極值、最值證明不等式的
2025-07-29 11:49