freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案最終版-展示頁

2024-10-06 06:34本頁面
  

【正文】 學能充分利用我們以前學過的知識來解決此問題,△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圓,O為圓心,連結(jié)BO并延長交圓于B′,設BB′= ∠BAB′=90176。并且一起研究了他的證明方法,利用它解決sinAsinBsinC了一些解三角形問題。sin105o\b===20=5sinCsin30o總結(jié):本道例題給出了解三角形的第一類問題(已知兩角和一邊,求另外兩邊和一角,因為兩個角都是確定的的,所以只有一種情況)【課堂練習1】教材P144練習1(可以讓學生上臺板演)【隨堂檢測】見幻燈片四、課堂小結(jié)【師】:本節(jié)課的主要內(nèi)容是正弦定理,即三角形ABC中有每條邊和它所對的角的正弦值相等。三、例題解析【例1】優(yōu)化P101例1分析:直接代入正弦定理中運算即可ab=sinAsinBcsinA10180?!編煛浚浩鋵嵈蠹胰绻?lián)系三角形的內(nèi)角和公式的話,其實只要有上面的任意一個條件,我們都可以解出三角形中所有的未知邊和角。對于一個比例式來說,如果我們知道其中的三項,那么就可以根據(jù)比例的運算性質(zhì)得到第四項?!編煛浚航?jīng)過上面的證明,我們用兩種方法得到了正弦定理的證明,并且得到了正弦定理對于直角、銳角、鈍角三角形都是成立的?!編煛浚喝绻鰽BC是鈍角三角形呢?又怎么樣得到正弦定理的證明呢?不妨假設∠A是鈍rr角,那么同樣道理如果我們做AC垂線上的一個單位向量j,把向量j和上面那個式uuuruuuruuur子AB+BC=AC的兩邊同時做數(shù)量積運算就可以得到ruuurruuurruuur00jABcos(C90)+jBCcos(90+C)=jACcos900,化簡即可得到csinA=asinC,即acbc==,同理可以得到。哪一種運算同時涉及到向量的夾角和模呢?(板書:證法二,向量法)rrrr【生】:向量的數(shù)量積ab=abcosq【師】:先在銳角三角形中討論一下,如果把三角形的三邊看做向量的話,則容易得到三角uuuruuuruuur形的三個邊向量滿足的關(guān)系:AB+BC=AC,那么,和哪個向量做數(shù)量積呢?還有數(shù)量積公式中提到的是夾角的余弦,而我們要得是夾角的正弦,這個又怎么轉(zhuǎn)化?(啟發(fā)學生得出通過做點A的垂線根據(jù)誘導公式來得到)【生】:做A點的垂線【師】:那是那條線的垂線呢?【生】:AC的垂線rr【師】:如果我們做AC垂線上的一個單位向量j,把向量j和上面那個式子的兩邊同時做數(shù)cos(90A)cos(90+C)=cos90,化簡000即可得到csinA=asinC,即acbc==,同理可以得到。【師】:這是一種很好的證明方法,能不能用之前學過的向量來證明呢?答案是肯定的。在上面這個對稱的式子中涉及到了三角形三個角的正弦,因此我們把它稱為正弦定理,即我們今天的課題。這個實際問題說明了三角形的邊與角有緊密的聯(lián)系,邊和角甚至可以互相轉(zhuǎn)化,這節(jié)課我們就要從正弦這個側(cè)面來研究三角形邊角的關(guān)系即正弦定理。如果只提供測角儀和皮尺,你能測出埃菲爾鐵塔的高度嗎?【生】:可以先在離鐵塔一段距離的地方測出觀看鐵塔的仰角,再測出與鐵塔的水平距離,就可以利用三角函數(shù)測出高度。教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。3.情感目標:培養(yǎng)學生在方程思想指導下處理解三角形問題的運算能力;培養(yǎng)學生合情推理探索數(shù)學規(guī)律的數(shù)學思思想能力,通過三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。o,o,第二篇:正弦定理教案正弦定理教案教學目標:1.知識目標:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題。o,在△ABC中,已知a=4,b=10,A=30,求∠B。角所對的邊長為8,那么30176。和45176。解三角形。求B。解三角形。 ,求B、C、:在△ABC中,已知a=4, b=42 , B=45176。 , C=30176。②已知兩角和一邊,求另一角和其他邊。第一篇:正弦定理教案(最終版)解斜三角形——正弦定理學習目的: ,了解數(shù)學理論的發(fā)現(xiàn)發(fā)展過程;,能初步運用正弦定理解斜三角形。學習重點: 正弦定理的證明和解三角形 學習難點: 正弦定理的證明 學習過程: 一.定理引入:提出問題:設點B在長江岸邊,點A在對岸那邊,為了測量A、B兩點間的距離,你有何好辦法呢?(給你尺和量角器材)二、定理講解:正弦定理 在一個三角形中,各邊和它所對角的正弦的比相等,即abc== sinAsinBsinC正弦定理可以解決三角形中兩類問題:①已知兩邊和其中一邊的對角,求另一邊的對角,進而可求其他的邊和角。三、定理應用:例1:在△ABC中,已知c=10, A=45176。 ,:在△ABC中,已知a=16, b=163 , A=30176。 ,求A、講練結(jié)合法、任務驅(qū)動法、自主探究法、小組合作學習法 情境教學法、講練結(jié)合法、任務驅(qū)動法、自主探究法、小組合作學習法 課堂練習:在△ABC中,已知b=6,c=23, B=45176。在△ABC中,已知a=4,b=46,A=60176。3在△ABC中,已知b=40,c=20, C=45176。課后練習:一個三角形的兩個內(nèi)角分別為30176。如果45176。角所對邊的長為________________在△ABC中,b=3,c=33, B=30,求∠C。在△ABC中,已知b=4,c=8,B=30,求∠A,∠C和邊a。:讓學生從已有的幾何知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,并進行定理基本應用的實踐操作。教學重點:正弦定理的探索和證明及其基本應用。教學過程:一、復習引入創(chuàng)設情境:【師】:世界聞名的巴黎埃菲爾鐵塔,比其他的建筑高出很多?!緞?chuàng)設情
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1