【摘要】共線向量與共面向量一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作ba//:對(duì)空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù)使baobba//),(,?ba??
2024-08-20 18:38
【摘要】§相等向量與共線向量【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價(jià)的?!局R(shí)梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個(gè)相等的非零向量,都可用一條有向線段來表示,并且
2024-12-14 08:37
【摘要】平面向量的坐標(biāo)運(yùn)算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對(duì)應(yīng)一一對(duì)應(yīng)點(diǎn)AOA向量(,)xy坐標(biāo)1122+eeaaa?12(,)aaa?1
2024-08-04 05:00
【摘要】向量的幾何表示在上一節(jié)課中,我們學(xué)到了一個(gè)新的概念——向量,它是一個(gè)有大小和有方向的量,那么在數(shù)學(xué)中,我們?cè)撊绾伪硎灸??以及它的相關(guān)概念是如何定義的呢?本課將重點(diǎn)介紹向量的表示方法與相關(guān)概念.表示方法向量的模A(起點(diǎn))B(終點(diǎn))a向量的大小——長(zhǎng)度稱為向量的模,記作.
2024-11-12 18:44
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-24 17:25
【摘要】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-21 01:17
【摘要】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長(zhǎng)度(模)公式注意:此公式的幾何意義是表示長(zhǎng)方體的對(duì)角線的長(zhǎng)度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時(shí),同向;(2)當(dāng)
2024-11-24 16:42
【摘要】共線向量與共面向量廣東河源中學(xué)王利強(qiáng)與平面一樣,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.a(chǎn)平行于b記作a∥b.對(duì)空間任意兩個(gè)向量a、b(b≠0),a∥b的充要條件是存在實(shí)數(shù)λ使a=λb.a(chǎn)?b?a?共線向量定理推論
2024-08-31 02:01
【摘要】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
【摘要】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-23 21:10
2024-08-31 00:32
2024-08-20 18:56
【摘要】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-21 03:12
【摘要】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過程(一)、
2024-11-24 18:10
【摘要】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對(duì)平面向量的基本定理有了充分的認(rèn)識(shí)和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問題搭建了橋梁,同時(shí)也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對(duì)立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2024-08-22 15:05