【摘要】平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對(duì)實(shí)數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-21 09:20
【摘要】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-21 05:07
【摘要】復(fù)數(shù)與平面向量的聯(lián)系請(qǐng)同學(xué)們考慮:1、有關(guān)復(fù)數(shù)的知識(shí),我們學(xué)了什么?2、有關(guān)向量的知識(shí),你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
【摘要】高一數(shù)學(xué)導(dǎo)學(xué)案編制人:審核人:必修4第二章第1課時(shí)向量概念及物理意義【學(xué)習(xí)目標(biāo)】,理解向量的概念.2.理解零向量、單位向量、共線向量、相等向量等概念?!窘虒W(xué)重點(diǎn)】向量、零向量、單位向量、平行向量的概念.【教學(xué)難點(diǎn)】向量及相關(guān)概念的理解,零向量、單位向量、平行向量的判斷【教材
2025-04-26 12:24
【摘要】第1節(jié)平面向量的概念及線性運(yùn)算(對(duì)應(yīng)學(xué)生用書第59~60頁)1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個(gè)單位的向量.(4)平行向量:方向相同
2024-11-23 09:01
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-23 21:09
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-22 08:35
【摘要】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個(gè)概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學(xué)上,為了正確理解、區(qū)分這些量,我們引進(jìn)向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
【摘要】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對(duì)應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個(gè)非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時(shí),夾角θ
2024-11-24 01:35
2024-11-22 00:48
【摘要】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運(yùn)算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【摘要】高一數(shù)學(xué)競(jìng)賽輔導(dǎo)六(向量應(yīng)用)求解平面向量中的數(shù)量積問題,主要有這樣幾種方法:1.利用向量線性運(yùn)算,施行向量的轉(zhuǎn)化;2.建立坐標(biāo)系轉(zhuǎn)化為代數(shù)問題;3.利用向量數(shù)量積的幾何意義解決數(shù)量積的求解問題。4.公式法:(極化法)例1(1)已知平面向量,滿足|+|=3,|-|=1,則=_____.(2)已知平面向量,,
2025-04-13 05:00
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量的物理背景及其含義》教學(xué)目標(biāo)?了解向量的實(shí)際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量.?通過對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別
【摘要】1.設(shè)、、是單位向量,且·=0,則的最小值為(D)A. B. C.D.解析是單位向量.2.已知向量,則(C) A.B.C.D.解析,故選C.3.平面向量a與b的夾角為,,則(
2025-04-26 13:01
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2024-11-24 16:44