【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-21 04:47
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運算性質(zhì),逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-23 09:01
【摘要】新課標人教版課件系列《高中數(shù)學》必修42.3.3《平面向量的坐標運算》教學目的?(1)理解平面向量的坐標的概念;?(2)掌握平面向量的坐標運算;?(3)會根據(jù)向量的坐標,判斷向量是否共線.?教學重點:平面向量的坐標運算?教學難點:向量的坐標表示的理解及運算的準確性.
2024-11-23 06:00
【摘要】平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對實數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-21 09:20
【摘要】復(fù)數(shù)與平面向量的聯(lián)系請同學們考慮:1、有關(guān)復(fù)數(shù)的知識,我們學了什么?2、有關(guān)向量的知識,你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
【摘要】1.設(shè)、、是單位向量,且·=0,則的最小值為(D)A. B. C.D.解析是單位向量.2.已知向量,則(C) A.B.C.D.解析,故選C.3.平面向量a與b的夾角為,,則(
2025-04-26 13:01
【摘要】必修4第二章平面向量教學質(zhì)量檢測姓名:班級:學號:得分:(5分×12=60分):1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( ?。〢. B.C. D.3.已知=(3,4),=(
2025-07-03 19:26
【摘要】第1節(jié)平面向量的概念及線性運算(對應(yīng)學生用書第59~60頁)1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同
【摘要】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學上,為了正確理解、區(qū)分這些量,我們引進向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-23 21:09
【摘要】第2節(jié)平面向量基本定理及其坐標表示(對應(yīng)學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-24 01:35
【摘要】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-22 08:35
2024-11-22 00:48
【摘要】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【摘要】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點,且,,則=()A.B. ?。茫模?、若向量與不共線,,且
2025-07-03 15:17