【摘要】高一數(shù)學(xué)《必修五》數(shù)列測試題一、選擇題1、等差數(shù)列—3,1,5,…的第15項的值是(B)A.40 B.53 C.63 D.762、設(shè)為等比數(shù)列的前項和,已知,,則公比(B)A.3 B.4 C.5 D.63、已知則的等差中項為(A)A. B. C. D
2025-07-03 19:34
【摘要】高一數(shù)學(xué)期中考試試卷滿分:120分考試時間:90分鐘一、選擇題(每題5分,共50分)1、已知集合,則集合=()、、、、2、若,則()、、3、、3、函數(shù)的定義域為(
【摘要】學(xué)大教育《平面向量》測試題一、選擇題(1,1),A(2,-4),B(x,-9)共線,則()=-1 =3 = =51=(-5,4)平行的向量是()A.(-5k,4k) B.(-,-) C.(-10,2) D.(5k,4k),則A分所成的比是()A. B. 、b,a·b=-40,|a|=10
2025-07-01 17:27
【摘要】平面向量名師答疑平面向量的基本定理向量平面向量的坐標(biāo)表示平移向量的數(shù)量積兩個非零向量垂直的充要條件余弦定理正線定理斜三角形的解法及其應(yīng)用線段定比分點坐標(biāo)公式兩個向量共線的充要條件向量的線性運算知識結(jié)構(gòu)(一)知識點歸納
2024-11-22 08:35
【摘要】高一數(shù)學(xué)競賽輔導(dǎo)六(向量應(yīng)用)求解平面向量中的數(shù)量積問題,主要有這樣幾種方法:1.利用向量線性運算,施行向量的轉(zhuǎn)化;2.建立坐標(biāo)系轉(zhuǎn)化為代數(shù)問題;3.利用向量數(shù)量積的幾何意義解決數(shù)量積的求解問題。4.公式法:(極化法)例1(1)已知平面向量,滿足|+|=3,|-|=1,則=_____.(2)已知平面向量,,
2025-04-13 05:00
【摘要】高一數(shù)學(xué)導(dǎo)學(xué)案編制人:審核人:必修4第二章第1課時向量概念及物理意義【學(xué)習(xí)目標(biāo)】,理解向量的概念.2.理解零向量、單位向量、共線向量、相等向量等概念?!窘虒W(xué)重點】向量、零向量、單位向量、平行向量的概念.【教學(xué)難點】向量及相關(guān)概念的理解,零向量、單位向量、平行向量的判斷【教材
2025-04-26 12:24
【摘要】平面向量測試題1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( )A. B.C. D.3.已知=(3,4),=(5,12),與則夾角的余弦為()A.B.C.
2025-07-04 15:44
【摘要】第4節(jié)平面向量的應(yīng)用(對應(yīng)學(xué)生用書第66頁)1.向量在平面幾何中的應(yīng)用平面向量在平面幾何中的應(yīng)用主要是用向量的線性運算和數(shù)量積解決平行、垂直、長度、夾角等問題.設(shè)a=(x1,y1),b=(x2,y2),①證明線線平行或點共線問題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x
2024-11-23 06:00
【摘要】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-21 05:07
【摘要】平面向量的基本定理及坐標(biāo)表示一、選擇題1、若向量=(1,1),=(1,-1),=(-1,2),則等于()A、+B、C、 D、+2、已知,A(2,3),B(-4,5),則與共線的單位向量是 ()A、 B、C、 D、
2025-07-03 19:14
【摘要】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點,且,,則=()A.B. ?。茫模?、若向量與不共線,,且
2025-07-03 15:17
【摘要】數(shù)學(xué)必修1第一章集合與函數(shù)測試題一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(nèi)(每小題5分,共50分)。1.用描述法表示一元二次方程的全體,應(yīng)是 ()A.{x|ax2+bx+c=0,a,b,c∈R}B.{x|ax2+bx+c=0,a,b,c∈R,且a≠0}C.{ax2+bx+c=0|a,b,c∈R}D
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-21 04:47
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運算性質(zhì),逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-23 09:01
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修42.3.3《平面向量的坐標(biāo)運算》教學(xué)目的?(1)理解平面向量的坐標(biāo)的概念;?(2)掌握平面向量的坐標(biāo)運算;?(3)會根據(jù)向量的坐標(biāo),判斷向量是否共線.?教學(xué)重點:平面向量的坐標(biāo)運算?教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.