freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中幾何輔助線做法大全-展示頁(yè)

2025-08-12 01:12本頁(yè)面
  

【正文】 ∠1-∠2∴∠A =2∠D規(guī)律17. 三角形的兩個(gè)內(nèi)角平分線相交所成的鈍角等于90o加上第三個(gè)內(nèi)角的一半.例:如圖,BD、CD分別平分∠ABC、∠ACB, 求證:∠BDC = 90o+∠A證明:∵BD、CD分別平分∠ABC、∠ACB ∴∠A+2∠1+2∠2 = 180o ∴2(∠1+∠2)= 180o-∠A① ∵∠BDC = 180o-(∠1+∠2) ∴(∠1+∠2) = 180o-∠BDC② 把②式代入①式得 2(180o-∠BDC)= 180o-∠A 即:360o-2∠BDC =180o-∠A ∴2∠BDC = 180o+∠A ∴∠BDC = 90o+∠A規(guī)律18. 三角形的兩個(gè)外角平分線相交所成的銳角等于90o減去第三個(gè)內(nèi)角的一半.例:如圖,BD、CD分別平分∠EBC、∠FCB, 求證:∠BDC = 90o-∠A證明:∵BD、CD分別平分∠EBC、∠FCB∴∠EBC = 2∠∠FCB = 2∠2∴2∠1 =∠A+∠ACB ① 2∠2 =∠A+∠ABC ②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A∴(∠1+∠2)= 90o+∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+∠A)∴∠BDC = 90o-∠A規(guī)律19. 從三角形的一個(gè)頂點(diǎn)作高線和角平分線,它們所夾的角等于三角形另外兩個(gè)角差(的絕對(duì)值)的一半.例:已知,如圖,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.求證:∠EAD = (∠C-∠B)證明:∵AE平分∠BAC∴∠BAE =∠CAE =∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o -∠C∵∠EAD = ∠EAC-∠DAC∴∠EAD = 〔180o-(∠B+∠C)〕-(90o-∠C) = 90o-(∠B+∠C)-90o+∠C = (∠C-∠B)如果把AD平移可以得到如下兩圖,F(xiàn)D⊥BC其它條件不變,結(jié)論為∠EFD = (∠C-∠B).注意:同學(xué)們?cè)趯W(xué)習(xí)幾何時(shí),可以把自己證完的題進(jìn)行適當(dāng)變換,從而使自己通過(guò)解一道題掌握一類題,提高自己舉一反三、靈活應(yīng)變的能力.,如果直接證不出來(lái),可連結(jié)兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形外角的位置上,小角處在內(nèi)角的位置上,再利用外角定理證題.例:已知D為△ABC內(nèi)任一點(diǎn),求證:∠BDC>∠BAC證法(一):延長(zhǎng)BD交AC于E,∵∠BDC是△EDC 的外角,∴∠BDC>∠DEC同理:∠DEC>∠BAC∴∠BDC>∠BAC證法(二):連結(jié)AD,并延長(zhǎng)交BC于F∵∠BDF是△ABD的外角,∴∠BDF>∠BAD同理∠CDF>∠CAD∴∠BDF+∠CDF>∠BAD+∠CAD即:∠BDC>∠BAC,構(gòu)造全等三角形. 例:已知,如圖,AD為△ABC的中線且∠1 = ∠2,∠3 = ∠4,求證:BE+CF>EF證明:在DA上截取DN = DB,連結(jié)NE、NF,則DN = DC 在△BDE和△NDE中,DN = DB∠1 = ∠2ED = ED∴△BDE≌△NDE∴BE = NE同理可證:CF = NF在△EFN中,EN+FN>EF∴BE+CF>EF規(guī)律22. 有以線段中點(diǎn)為端點(diǎn)的線段時(shí),常加倍延長(zhǎng)此線段構(gòu)造全等三角形.例:已知,如圖,AD為△ABC的中線,且∠1 = ∠2,∠3 = ∠4,求證:BE+CF>EF證明:延長(zhǎng)ED到M,使DM = DE,連結(jié)CM、FM△BDE和△CDM中, BD = CD∠1 = ∠5ED = MD∴△BDE≌△CDM∴CM = BE又∵∠1 = ∠2,∠3 = ∠4 ∠1+∠2+∠3 + ∠4 = 180o∴∠3 +∠2 = 90o即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF和△MDF中ED = MD∠FDM = ∠EDFDF = DF∴△EDF≌△MDF∴EF = MF∵在△CMF中,CF+CM >MFBE+CF>EF(此題也可加倍FD,證法同上)規(guī)律23. 在三角形中有中線時(shí),常加倍延長(zhǎng)中線構(gòu)造全等三角形.例:已知,如圖,AD為△ABC的中線,求證:AB+AC>2AD證明:延長(zhǎng)AD至E,使DE = AD,連結(jié)BE∵AD為△ABC的中線∴BD = CD在△ACD和△EBD中BD = CD ∠1 = ∠2AD = ED∴△ACD≌△EBD∵△ABE中有AB+BE>AE∴AB+AC>2AD截長(zhǎng)法:在較長(zhǎng)的線段上截取一條線段等于較短線段;補(bǔ)短法:延長(zhǎng)較短線段和較長(zhǎng)線段相等.這兩種方法統(tǒng)稱截長(zhǎng)補(bǔ)短法.當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時(shí)用此種方法:①a>b②a177。b = c③a177。d例:已知,如圖,在△ABC中,AB>AC,∠1 = ∠2,P為AD上任一點(diǎn),求證:AB-AC>PB-PC證明:⑴截長(zhǎng)法:在AB上截取AN = AC,連結(jié)PN在△APN和△APC中,AN = AC∠1 = ∠2AP = AP∴△APN≌△APC∴PC = PN∵△BPN中有PB-PC<BN∴PB-PC<AB-AC⑵補(bǔ)短法:延長(zhǎng)AC至M,使AM = AB,連結(jié)PM在△ABP和△AMP中AB = AM ∠1 = ∠2AP = AP∴△ABP≌△AMP∴PB = PM又∵在△PCM中有CM >PM-PC∴AB-AC>PB-PC練習(xí):,在△ABC中,∠B = 60o,AD、CE是△ABC的角平分線,并且它們交于點(diǎn)O求證:AC = AE+CD,如圖,AB∥CD∠1 = ∠2 ,∠3 = ∠4. 求證:BC = AB+CD :①觀察要證線段在哪兩個(gè)可能全等的三角形中,然后證這兩個(gè)三角形全等。可歸結(jié)為“角分垂等腰歸”.例:已知,如圖,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延長(zhǎng)線于E求證:BD = 2CE證明:分別延長(zhǎng)BA、CE交于F∵BE⊥CF∴∠BEF =∠BEC = 90o在△BEF和△BEC中∠1 = ∠2 BE = BE∠BEF =∠BEC∴△BEF≌△BEC∴CE = FE =CF∵∠BAC = 90o , BE⊥CF∴∠BAC = ∠CAF = 90o ∠1+∠BDA = 90o∠1+∠BFC = 90o∠BDA = ∠BFC在△ABD和△ACF中∠BAC = ∠CAF∠BDA = ∠BFCAB = AC∴△ABD≌△ACF∴BD = CF∴BD = 2CE練習(xí):已知,如圖,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,求證:AB-AC = 2CD,可結(jié)合已知條件,把圖形中的某兩點(diǎn)連接起來(lái)構(gòu)造全等三角形.例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,求證:∠A = ∠D證明:(連結(jié)BC,過(guò)程略),可取某條線段中點(diǎn),為證題提供條件.例:已知,如圖,AB = DC,∠A = ∠D 求證:∠ABC = ∠DCB 證明:分別取AD、BC中點(diǎn)N、M,連結(jié)NB、NM、NC(過(guò)程略),常過(guò)角平分線上的點(diǎn)向角兩邊做垂線,利用角平分線上的點(diǎn)到角兩邊距離相等證題.例:已知,如圖,∠1 = ∠2 ,P為BN上一點(diǎn),且PD⊥BC于D,AB+BC = 2BD,求證:∠BAP+∠BCP = 180o證明:過(guò)P作PE⊥BA于E∵PD⊥BC,∠1 = ∠2 ∴PE = PD在Rt△BPE和Rt△BPD中BP = BPPE = PD∴Rt△BPE≌Rt△BPD∴BE = BD∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE∴AE = CD∵PE⊥BE,PD⊥BC∠PEB =∠PDC = 90o在△PEA和△PDC中PE = PD∠PEB =∠PDCAE =CD∴△PEA≌△PDC∴∠PCB = ∠EAP∵∠BAP+∠EAP = 180o∴∠BAP+∠BCP = 180o練習(xí):,如圖,PA、PC分別是△ABC外角∠MAC與∠NCA的平分線,它們交于P,PD⊥BM于M,PF⊥BN于F,求證:BP為∠MBN的平分線2. 已知,如圖,在△ABC中,∠ABC =100o,∠ACB = 20o,CE是∠ACB的平分線,D是AC上一點(diǎn),若∠CBD = 20o,求∠CED的度數(shù)。解法三:以BC為一邊作等邊三角形△BCE,連結(jié)AE,則EB = EC = BC,∠BEC =∠EBC = 60o∵EB = EC∴E在BC的中垂線上同理A在BC的中垂線上∴EA所在的直線是BC的中垂線∴EA⊥BC∠AEB = ∠BEC = 30o =∠PCB由解法一知:∠ABC = 50o∴∠ABE = ∠EBC-∠ABC = 10o =∠PBC∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB∴△ABE≌△PBC∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = (180o-∠ABP) = (180o-40o)= 70o⑴構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角例:已知,如圖,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,求證:AB+BD = AC證明:延長(zhǎng)AB到E,使BE = BD,連結(jié)DE則∠BED = ∠BDE∵∠ABD =∠E+∠BDE∴∠ABC =2∠E∵∠ABC = 2∠C∴∠E = ∠C 在△AED和△ACD中∠E = ∠C∠1 = ∠2AD = AD∴△AED≌△ACD∴AC = AE∵AE = AB+BE∴AC = AB+BE
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1