【摘要】線、角、相交線、平行線(n≥2)個點(diǎn),其中任何三點(diǎn)都不在同一直線上,那么每兩點(diǎn)畫一條直線,一共可以畫出n(n-1)條.〔n(n+1)+1〕個部分.,那么在這個圖形中共有線段的條數(shù)為n(n-1)條.(或延長線)上任一點(diǎn)分線段為兩段,這兩條線段的中點(diǎn)的距離等于線段長的一半.例:如圖,B在線段AC上,M是AB的中點(diǎn),N是BC的中點(diǎn).求證:MN=AC證明:∵M(jìn)是A
2025-08-12 01:12
【摘要】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【摘要】初中數(shù)學(xué)輔助線的添加方法一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個幾何定理都有與它相對應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做
2025-04-16 20:38
【摘要】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-04-23 02:46
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-11-03 17:05
【摘要】初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。四邊形平行四邊形出現(xiàn),對稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試
2025-07-26 18:02
【摘要】專業(yè)資料分享初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點(diǎn),連接則成中位線
2025-07-26 18:01
【摘要】第一篇:初中教你如何做幾何輔助線 初中幾何輔助線做法 三角形 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段...
2024-10-24 21:17
【摘要】第二講三大模型輔助線模塊一手拉手模型△ACD、△CBE為等邊△,A、C、B共線△ACD、△CBE為等邊△,AC、BC夾角任意△ACD、△CBE為頂角相同的等腰△ △ACD、△CBE可繞公共點(diǎn)任意旋轉(zhuǎn)例題1.如圖,等腰Rt△OAB,等腰Rt△OCD,∠AOB=∠COD=90o,M、N分別是AC、BD的中點(diǎn),求證:①∠1=∠2;②AC⊥BD;
2025-08-04 10:27
【摘要】人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中
2025-04-02 12:33
【摘要】專業(yè)資料分享人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,
【摘要】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時顯得十分復(fù)雜,若通過適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個完整的、特殊的、簡單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對新圖形的分析,原問題順利獲解。有許多初中幾何常見輔助線作法歌訣,下面這一套是很好的:人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-04-13 03:02
【摘要】論文標(biāo)題:淺談初中幾何中添加輔助線的技巧作者:鄺淑瑩單位:三水中學(xué)附屬初中日期:2021-8-25聯(lián)系電話:15024263134淺談初中幾何中添加輔助線的技巧三水中學(xué)附屬初中數(shù)學(xué)科組鄺淑瑩摘要:在初中數(shù)學(xué)的學(xué)習(xí)中,平面幾何無疑占據(jù)著十
2025-06-19 06:58
【摘要】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2025-06-27 13:03
【摘要】常見的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-04-02 02:14