【摘要】abc學(xué)習(xí)目標(biāo)課堂小結(jié)鞏固練習(xí)例題講解學(xué)習(xí)五步曲探究新知學(xué)習(xí)目標(biāo)1、掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.2、能運(yùn)用勾股定理由已知直角三角形中的兩邊長(zhǎng),求出第三邊長(zhǎng).3、能正確靈活運(yùn)用勾股定理及由它得到的直角三角形的判別方法.2022年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)
2025-06-22 13:41
【摘要】第14章勾股定理第2課時(shí)我們知道直角三角形中,兩條直角邊的平方和等于斜邊的平方,如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?今天這節(jié)課我們就來(lái)學(xué)習(xí)這個(gè)問(wèn)題。創(chuàng)設(shè)情境明確目標(biāo)...學(xué)習(xí)目標(biāo)下面有三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)
2025-06-21 12:08
【摘要】第14章綜合檢測(cè)題(時(shí)間:120分鐘滿分:120分)2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS一、選擇題(每小題3分,共30分)1.在△ABC中,三個(gè)角的度數(shù)之比為∠A∶∠B∶∠C=1∶2∶3,則∠A、∠B、∠C的對(duì)邊a、b、c滿足的結(jié)論中成立的是()
2025-06-28 17:56
2025-06-30 05:34
【摘要】第14章勾股定理章末小結(jié)2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS【易錯(cuò)分析】易錯(cuò)點(diǎn)1.在應(yīng)用勾股定理時(shí),沒(méi)有分清直角邊與斜邊【例1】在Rt△ABC中,∠A=90°,a=13cm,b=5cm,求第三邊c.【解答】解:在Rt△ABC中∠A=90
2025-07-05 22:55
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時(shí)勾股定理的驗(yàn)證及其簡(jiǎn)單應(yīng)用拼圖法大多數(shù)是利用驗(yàn)證勾股定理.利用定理,知道直角三角形任意兩條邊的長(zhǎng),可求出的長(zhǎng),并能利用它解決相關(guān)的簡(jiǎn)單的實(shí)際問(wèn)題.例如一根長(zhǎng)為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-25 20:57
【摘要】期末總復(fù)習(xí)四、勾股定理2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS【重難點(diǎn)剖析】重點(diǎn)1.勾股定理【例1】在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若AC=6,BC=8,求BD的長(zhǎng).解:在Rt△ABC中,AB2=AC2+BC2
2025-06-21 22:08
【摘要】中國(guó)古代有一個(gè)叫《路邊苦李》的故事:王戎7歲時(shí),與小伙伴們外出游玩,看到路邊的李樹(shù)上結(jié)滿了果子.小伙伴們紛紛去摘取果子,只有王戎站在原地不動(dòng).有人問(wèn)王戎為什么?王戎回答說(shuō):“樹(shù)在道邊而多子,此必苦李.”小伙伴摘取一個(gè)嘗了一下果然是苦李.王戎是怎樣知道李子是苦的嗎?他運(yùn)用了怎樣的推理方法?在證明一個(gè)命題時(shí)
2025-06-29 16:49
【摘要】第14章勾股定理勾股定理直角三角形的判定1.勾股定理的逆定理:如果三角形的三條邊長(zhǎng)a、b、c有關(guān)系,那么這個(gè)三角形是直角三角形,且邊c所對(duì)的角為直角.例如:在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊:(1)若a=2,b=2,c=6
2025-06-28 04:05
2025-06-21 21:55
【摘要】第14章勾股定理專題強(qiáng)化七巧用勾股定理解決問(wèn)題2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS專題強(qiáng)化七巧用勾股定理解決問(wèn)題強(qiáng)化角度1判斷三角形是否為直角三角形1.如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=4,CD=2,AD=6,求∠BCD的度數(shù).
2025-06-27 00:11
【摘要】課堂反饋1.用反證法證明“若a⊥c,b⊥c,則a∥b”時(shí),應(yīng)假設(shè)()A.a(chǎn)不垂直于cB.a(chǎn),b都不垂直于cC.a(chǎn)與b相交D.a(chǎn)⊥bC2.要證明命題“若a>b,則a2>b2”是假命題,下列a,
2025-06-21 12:10
2025-06-26 07:49