【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-24 06:55
2025-06-28 01:24
【摘要】第14章勾股定理第2課時我們知道直角三角形中,兩條直角邊的平方和等于斜邊的平方,如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?今天這節(jié)課我們就來學(xué)習(xí)這個問題。創(chuàng)設(shè)情境明確目標(biāo)...學(xué)習(xí)目標(biāo)下面有三組數(shù)分別是一個三角形的三邊長
2025-06-27 00:16
【摘要】abc學(xué)習(xí)目標(biāo)課堂小結(jié)鞏固練習(xí)例題講解學(xué)習(xí)五步曲探究新知學(xué)習(xí)目標(biāo)1、掌握勾股定理,了解利用拼圖驗證勾股定理的方法.2、能運用勾股定理由已知直角三角形中的兩邊長,求出第三邊長.3、能正確靈活運用勾股定理及由它得到的直角三角形的判別方法.2022年在北京召開的國際數(shù)學(xué)家大會
2025-06-22 14:08
2025-06-22 13:41
2025-06-21 12:08
【摘要】第14章勾股定理勾股定理反證法1.不易用直接證法證明的簡單問題,要用法.2.反證法的證明步驟是:先假設(shè)結(jié)論的是正確的;然后通過演繹推理,推出與基本事實、已證的定理、定義或已知條件相矛盾,從而說明不成立,進而得出正確.反證反面假設(shè)原
2025-06-28 04:14
2025-06-26 07:45
【摘要】反證法乙:這不可能,5月4號上午還看見你和丙在長安街逛街呢!甲:在五一長假里,我和爸爸、媽媽去新加坡玩了整整6天,真是太高興了.丙:是啊,5月4號我確實和甲在長安街逛街!假設(shè)甲去新加坡玩了6天,乙:甲沒有去新加坡玩了6天.那么甲從5月1號至6號或是2號至7號在新加坡,即5月4號甲
2025-06-27 04:56
2025-06-21 01:47
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時勾股定理的驗證及其簡單應(yīng)用拼圖法大多數(shù)是利用驗證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-25 20:57
2025-06-25 21:12
【摘要】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?HS立體圖形上的最短距離:將立體圖形側(cè)面展開,確定兩點在展開圖上的位置,連成,的長度就是立體圖形上的兩點間的最短距離.自我診斷1.如圖,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)在一蟲子從點A出發(fā),沿長方體表面到
【摘要】在同一平面內(nèi),兩點之間,線段最短創(chuàng)設(shè)情境明確目標(biāo)從行政樓A點走到教學(xué)樓B點怎樣走最近?教學(xué)樓行政樓BA你能說出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點沿側(cè)面爬行到B點,怎樣爬路程最短?創(chuàng)設(shè)情境明確目標(biāo)BA
【摘要】第14章勾股定理勾股定理的應(yīng)用第1課時勾股定理的應(yīng)用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-28 17:54