【摘要】空間向量的坐標(biāo)運(yùn)算一.問題情境四.課堂練習(xí)五.小結(jié)作業(yè)二.學(xué)生活動(dòng)三.?dāng)?shù)學(xué)應(yīng)用蘇教版選修1-1海安縣實(shí)驗(yàn)中學(xué)高二數(shù)學(xué)備課組1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)
2024-11-22 01:37
【摘要】空間向量的坐標(biāo)運(yùn)算(一)儋州市第一中學(xué)數(shù)學(xué)組吳應(yīng)杰空間向量的基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個(gè)______基底空間任意三個(gè)不共面向
2024-10-29 13:31
【摘要】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-30 11:25
【摘要】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-29 13:01
【摘要】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2024-08-20 06:24
【摘要】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是存在實(shí)數(shù),使=.,,,abpabxypxayb如果兩個(gè)向量不共線,則向量與向量共面的充要
2024-08-07 08:50
2024-11-30 12:14
【摘要】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對(duì)應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2024-08-20 06:17
【摘要】§3.空間向量運(yùn)算的坐標(biāo)表示知識(shí)點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-12-02 03:14
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-24 17:25
【摘要】空間向量運(yùn)算的坐標(biāo)表示勉縣二中楊恒一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,,(),,,(a222111zyxbzyx????ba);,,(332211yxyxyx?????ba);,,(332211yxyxyx????a?);,,(111zyx?????ba;332211yxyxyx???ba//)
2024-11-29 23:48
【摘要】平面向量的坐標(biāo)運(yùn)算教案一、教學(xué)目標(biāo)1、知識(shí)與技能:掌握平面向量的坐標(biāo)運(yùn)算;2、過程與方法:通過對(duì)共線向量坐標(biāo)關(guān)系的探究,提高分析問題、解決問題的能力。3情感態(tài)度與價(jià)值觀:學(xué)會(huì)用坐標(biāo)進(jìn)行向量的相關(guān)運(yùn)算,理解數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系。二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確.三、教學(xué)設(shè)想(一
2025-04-26 01:00
【摘要】,p,xypxayb.abab如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對(duì),,使=+共線向量定理:復(fù)習(xí):共面向量定理:0//a.abbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是
2025-06-21 19:02
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,
2024-11-23 21:10
【摘要】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-21 03:12