【摘要】高二數(shù)學(xué)教學(xué)設(shè)計——設(shè)計人:董永興教材分析:引入空間直角坐標系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點,為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運算,以及基本定理的基礎(chǔ)上進一步學(xué)習(xí)空間向量的坐標運算及其規(guī)律,是平面向量的坐標運算在空間推廣和拓展,為運用向量坐標運算解
2025-04-25 12:24
【摘要】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長度為零的向量長度為零的向量模為1的向量模為1的向量長度相等且方向相反的向量長
2024-12-06 17:38
【摘要】空間向量的正交分解及其坐標表示一、空間直角坐標系單位正交基底:如果空間的一個基底的三個基向量互相垂直,且長都為1,則這個基底叫做單位正交基底,常用來I,j,k表示空間直角坐標系:在空間選定一點O和一個單位正交基底i、j、k。以點O為原點,分別以i、j、
2024-11-30 07:54
【摘要】平面向量的坐標運算平面向量共線的坐標表示問題提出?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-28 00:10
【摘要】坐標表示1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-30 12:14
2024-11-30 11:25
【摘要】預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引3.1空間向量及其運算預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引
2025-07-29 07:00
【摘要】一、向量的直角坐標運算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-29 13:01
【摘要】導(dǎo)入新課復(fù)習(xí)上一節(jié)課,我們借助“類比思想”把平面向量的有關(guān)概念及加減運算擴展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運算律加法交換律及結(jié)合律.兩個空間向量的加、減法與兩個平面向量的加、減法實質(zhì)是
2025-06-21 19:01
【摘要】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-31 01:08
【摘要】§平面向量的坐標運算(二)知識回顧平面向量的坐標表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-21 06:28
【摘要】復(fù)習(xí):向量數(shù)量積的定義是什么?如何求向量夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答:babababa????????cos,cos運算律有:)()().(2bababa????????abba???.1cbcacba?????
2024-11-22 08:36
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,
2024-11-23 21:10
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-21 04:47
【摘要】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2024-08-20 06:24