【摘要】排列組合公式復(fù)習(xí)排列與組合 考試內(nèi)容:兩個(gè)原理;排列、排列數(shù)公式;組合、組合數(shù)公式?! 】荚囈螅?)掌握加法原理及乘法原理,并能用這兩個(gè)原理分析和解決一些簡(jiǎn)單的問(wèn)題?! ?)理解排列、組合的意義。掌握排列數(shù)、組合數(shù)的計(jì)算公式,并能用它們解決一些簡(jiǎn)單的問(wèn)題?! ≈攸c(diǎn):兩個(gè)原理尤其是乘法原理的應(yīng)用。 難點(diǎn):不重不漏?! ≈R(shí)要點(diǎn)及典型例
2025-04-02 12:35
【摘要】排列組合問(wèn)題教學(xué)目標(biāo):、組合的意義;正確區(qū)分排列、組合問(wèn)題;、排列數(shù)和組合數(shù)的意義,能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列或組合;;、分析與數(shù)字有關(guān)的計(jì)數(shù)問(wèn)題,以及與其他專題的綜合運(yùn)用,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;通過(guò)本講的學(xué)習(xí),對(duì)排列組合的一些計(jì)數(shù)問(wèn)題進(jìn)行歸納總結(jié),重點(diǎn)掌握排列與組合的聯(lián)系和區(qū)別,并掌握一些排列組合技巧,如捆綁法、擋板法等。。知識(shí)點(diǎn)撥
2025-03-31 14:03
【摘要】小學(xué)奧數(shù)排列組合例題知識(shí)點(diǎn)撥:一.加法原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1中不同的方法,在第二類辦法中有M2中不同的方法,……,在第N類辦法中有Mn種不同的方法,那么完成這件事情共有M1+M2+……+Mn種不同的方法。二.乘法原理:如果完成某項(xiàng)任務(wù),可分為k個(gè)步驟,完成第一步有n1種不同的方法,完成第二步有n2種不同的方法,…
2025-04-02 03:09
【摘要】排列組合問(wèn)題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.,如果甲乙兩個(gè)必須不相鄰,那么不同的排法種
2025-04-03 02:37
【摘要】高考數(shù)學(xué)中涂色問(wèn)題的常見(jiàn)解法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,因而這類問(wèn)題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類型及求解方法1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1。用5種不同的顏色給圖中
【摘要】排列組合,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置.先排末位共有然后排首位共有最后排其它位置共有由分步計(jì)數(shù)原理得練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問(wèn)有多少不同的種法?
2024-08-20 18:16
【摘要】排列組合二項(xiàng)定理排列組合二項(xiàng)定理知識(shí)要點(diǎn)一、兩個(gè)原理.1.乘法原理、加法原理.2.可以有重復(fù)元素的排列.從m個(gè)不同元素中,每次取出n個(gè)元素,元素可以重復(fù)出現(xiàn),按照一定的順序排成一排,那么第一、第二……第n位上選取元素的方法都是m個(gè),所以從m個(gè)不同元素中,每次取出n個(gè)元素可重復(fù)排列數(shù)m·m·…m=mn..例如:n件物品放入m個(gè)抽屜中,不限
2025-07-04 23:05
【摘要】范文范例參考排列組合公式/排列組合計(jì)算公式排列P------和順序有關(guān)??組合C-------不牽涉到順序的問(wèn)題排列分順序,組合不分例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"把5本書(shū)分給3個(gè)人,有幾種分法"組合"1.排列及計(jì)算公式
2025-07-04 22:59
【摘要】排列組合公式/排列組合計(jì)算公式排列P------和順序有關(guān)組合C-------不牽涉到順序的問(wèn)題排列分順序,組合不分例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"把5本書(shū)分給3個(gè)人,有幾種分法"組合"1.排列及計(jì)算公式從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列
2024-08-20 07:21
【摘要】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2024-08-20 07:38
【摘要】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2024-08-20 07:27
【摘要】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛(ài)敏高考目標(biāo)掌握排列、組合問(wèn)題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力??.二、過(guò)程與方法通過(guò)問(wèn)題的探究,體會(huì)知識(shí)的類比遷移。以
2024-08-20 06:55
【摘要】§19排列組合二項(xiàng)式定理分類解決排列組合綜合性問(wèn)題的要注意的問(wèn)題1.認(rèn)真審題,弄清要做什么事;2.怎樣做才能完成所要做的事,即采取分步還是分類,確定分多少步及多少類;3.確定是排列問(wèn)題(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少個(gè)元素;4.注意積累排列組合問(wèn)題的方法,以快速準(zhǔn)確求解.
2024-08-20 01:16
【摘要】排列組合問(wèn)題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元
2025-07-04 22:57
【摘要】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-30 23:43