【摘要】一、差分的概念二、差分方程的概念三、常系數(shù)線性差分方程解的結(jié)構(gòu)第六節(jié)差分與差分方程的概念常系數(shù)線性差分方程解的結(jié)構(gòu)四、小結(jié)一、差分的概念.Δ,)1()()1()0(:).(111210xxxxxxxyyyyyyyyyyyxfxfffxxfy???
2024-09-11 12:41
【摘要】一、差分方程的簡單經(jīng)濟(jì)應(yīng)用二、小結(jié)第九節(jié)差分方程的簡單經(jīng)濟(jì)應(yīng)用一、差分方程的簡單經(jīng)濟(jì)應(yīng)用差分方程在經(jīng)濟(jì)領(lǐng)域的應(yīng)用十分廣泛,下面從具體的實(shí)例體會(huì)其應(yīng)用的場合和應(yīng)用的方法.??.01本利和年末的,求,且初始存款額為設(shè)為年利率,年存款總額,為設(shè)存款模型例一:tSrSSSrtStttt???解tttr
【摘要】§常系數(shù)線性差分方程的求解解法+零狀態(tài)響應(yīng)利用卷積求系統(tǒng)的零狀態(tài)響應(yīng):齊次解+特解4.z變換法?反變換?y(n)一.迭代法解差分方程的基礎(chǔ)方法差分方程本身是一種遞推關(guān)系,??的解析式但得不到輸出序列ny????111300?????yyn????410311
2025-07-26 19:14
【摘要】一、微分方程在經(jīng)濟(jì)中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟(jì)學(xué)中的綜合應(yīng)用1.分析商品的市場價(jià)格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對(duì)價(jià)格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時(shí),x=1200)(p的單位為元,x的單位為千克)試
2024-09-11 12:46
【摘要】主要內(nèi)容典型例題第十章微分方程與差分方程習(xí)題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關(guān)定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對(duì)應(yīng)項(xiàng)f(x)的形式及其特解形式高階方程待
2024-09-01 16:42
【摘要】數(shù)字信號(hào)處理課程設(shè)計(jì)題目:基于MATLAB的線性常系數(shù)差分方程求解學(xué)院:專業(yè):班級(jí):學(xué)號(hào):
2025-06-27 17:36
【摘要】第八章微分方程(組)§8-1微分方程(組)解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2
2025-01-21 11:26
【摘要】綜上所述,方程xmexPcyybya???????)(具有如下形式的特解:xmkexQxy???)(。其中)()(xPxQmm是與同次但系數(shù)待定的多項(xiàng)式,?按k不是特征方程的根、是單根或二重根依次取0,1或2。應(yīng)用歐拉公式,2cosix
2025-01-28 14:43
【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對(duì)于一階微分方程,
2025-07-03 03:52
【摘要】2021/6/14數(shù)字信號(hào)處理三、常系數(shù)線性差分方程用差分方程來描述時(shí)域離散系統(tǒng)的輸入輸出關(guān)系。一個(gè)N階常系數(shù)線性差分方程表示為:00()()NMkmkmaynkbxnm???????01kmaab?,,是常數(shù)其中:2021/6/14數(shù)字信號(hào)處理求解常系數(shù)線性差分方程
2025-05-26 23:16
【摘要】第二節(jié)向量及其線性運(yùn)算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運(yùn)算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點(diǎn),2M為終點(diǎn)的有向線段.1M2M??a?21MM一、向量及其幾何表示
2024-09-11 12:44
【摘要】一、柱面與旋轉(zhuǎn)曲面二、二次曲面三、小結(jié)思考題第五節(jié)曲面及其方程本節(jié)只對(duì)一些常見的曲面,圍繞下面兩個(gè)基本問題進(jìn)行討論:(Ⅱ)已知坐標(biāo)間的關(guān)系式,研究曲面形狀.(討論柱面(cylinder)、旋轉(zhuǎn)曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點(diǎn)的軌
2024-09-01 11:12
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對(duì)應(yīng)于非齊次線性方程的齊次線性方程.
2024-09-06 06:00
【摘要】)(xfqyypy??????二階常系數(shù)非齊次線性方程對(duì)應(yīng)齊次方程,0??????qyypy通解結(jié)構(gòu),yYy??常見類型),(xPm,)(xmexP?,cos)(xexPxm??,sin)(xexPxm??難點(diǎn):如何求特解?方法:待定系數(shù)法.)()(xPexfmx??一、
2024-10-28 04:26
【摘要】一、空間曲線及其方程二、空間曲線在坐標(biāo)面上的投影三、小結(jié)思考題第六節(jié)空間曲線及其方程一、空間曲線及其方程?????0),,(0),,(zyxGzyxF空間曲線的一般方程曲線上的點(diǎn)都滿足方程,滿足方程的點(diǎn)都在曲線上,不在曲線上的點(diǎn)不能同時(shí)滿足兩個(gè)方程.xoz
2024-09-11 12:38