【摘要】......基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-19 23:12
【摘要】第一篇:基本不等式的證明 重要不等式及其應用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【摘要】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質量.不過,我們可作第二次測量:把物體調換到天平的另一盤上,此時稱得物體的質量為的質量呢?:
2024-08-18 03:53
【摘要】§基本不等式2:2abab??(教學教案設計)①各項皆為正數(shù);②和或積為定值;③注意等號成立的條件.利用基本不等式求最值時,要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當且僅當x=y時,取“=”號).(2)x+
【摘要】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】基本不等式應用一.基本不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)
2025-03-31 00:14
【摘要】第一篇:基本不等式教案 基本不等式 【教學目標】 1、掌握基本不等式,能正確應用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學對基本不等式應用的二個條件有進一步的...
2024-10-28 11:37
【摘要】Mathwang幾個經(jīng)典不等式的關系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-23 08:24
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學肖劍 一、教材分析 不等式是高中的重點也是難點,而本節(jié)內(nèi)容又是該章的重中之重,是《考試說明》中八個C級考點之一?;静坏仁降?..
2024-10-27 19:03
【摘要】基本不等式說課稿 基本不等式是主要應用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【摘要】基本不等式學習目標?學習目標:理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關系。初步樹立“數(shù)形結合次函數(shù)、一元二次方程的關系。?學法指導:發(fā)現(xiàn)、討論法;數(shù)形結合。”的觀念。掌握一元二次不等式的解法及步驟。?學習重點、難點:一元二次不等式、二次函數(shù)、一元二次方程的關系;一元二次不等式的解法及
2024-12-01 11:40
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-26 01:36
2025-07-30 19:51
【摘要】基本不等式的綜合應用基本不等式是人教版高中數(shù)學必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結合教學中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當且時,,當且僅當時等號成立,簡記為“和定積最大”(2)當且時,,當且僅當時等號成立,簡
2025-07-29 12:30
【摘要】2abab??§:ICM2022會標趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實數(shù)a、b,我們有當且僅當a=b時,等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-08-17 15:14