【摘要】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設(shè)數(shù)列{an}的前n項(xiàng)的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項(xiàng)a1與通項(xiàng)an...
2024-10-28 04:58
【摘要】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個(gè)或多個(gè)中間變量C作比較,即若能判定同時(shí)成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強(qiáng)的不等變形,必須時(shí)刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧 1、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-31 02:44
【摘要】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時(shí)最常用的推證技巧,但經(jīng)教學(xué)實(shí)踐告訴我們,這種技巧卻是不等式證明部分的一個(gè)教學(xué)難點(diǎn)。學(xué)生在證明不等式時(shí),常因...
2024-10-28 03:46
【摘要】第一篇:利用放縮法證明不等式舉例 利用放縮法證明不等式舉例 高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現(xiàn),且多是在壓軸題中出現(xiàn)。放縮法證明不等式有法可依,但具體到題,又常常沒有定法...
2024-10-27 12:24
【摘要】第一篇:淺談?dòng)梅趴s法證明不等式 淮南師范學(xué)院2012屆本科畢業(yè)論文1 目錄 引言?????????????????????????????????(2)?????????????????????...
2024-10-28 08:11
【摘要】第一篇:用放縮法證明不等式1 用放縮法證明不等式 時(shí)間:2009-01-1310:47點(diǎn)擊: 1230次 不等式是高考數(shù)學(xué)中的難點(diǎn),而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素...
2024-10-28 03:53
【摘要】第一篇:放縮法與數(shù)列不等式的證明 2017高三復(fù)習(xí)靈中黃老師的專題 放縮法證明數(shù)列不等式 編號(hào):001引子:放縮法證明數(shù)列不等式歷來(lái)是高中數(shù)學(xué)的難點(diǎn),在高考數(shù)列試題中經(jīng)常扮演壓軸的角色。由于放縮...
2024-10-28 03:17
【摘要】第一篇:放縮法證明數(shù)列不等式經(jīng)典例題 放縮法證明數(shù)列不等式 主要放縮技能:=2=-nn+1n(n+1)nn(n-1)n-1n 114411===2(-) 22n4n-1(2n+1)(2n...
2024-10-28 01:13
【摘要】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
【摘要】第一篇:不等式證明之放縮法 不等式證明之放縮法 放縮法的定義 所謂放縮法,即要證明不等式A (1)放縮的方向要一致。 (2)放與縮要適度。 (3)很多時(shí)候只對(duì)數(shù)列的一部分進(jìn)行放縮法,保留一...
2024-10-28 23:26
【摘要】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點(diǎn),結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進(jìn)行正確的推理,得到矛盾,說明假設(shè)不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2024-08-14 17:41
【摘要】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點(diǎn)考查用放縮法證明不等式,這類試題技巧性強(qiáng),難度大...
2024-10-28 05:08
【摘要】第一篇:淺談?dòng)梅趴s法證明不等式 淺談?dòng)梅趴s法證明不等式 山東省許曄 不等式的證明是中學(xué)數(shù)學(xué)教學(xué)的重點(diǎn),也是學(xué)生接受時(shí)感到頭痛的難點(diǎn)。不等式的證明方法很多。如:比較法(比差商法)、分析法、綜合法、...
2024-10-28 04:08
【摘要】第一篇:如何靈活利用放縮法等方法證明不等式 如何靈活利用放縮法等方法證明不等式 儲(chǔ)曙曉 不等式的證明有多種方法,如放縮法、數(shù)學(xué)歸納法等,但是在運(yùn)用這些方法時(shí),:1+1117++×××+.(n?...
2024-10-28 00:12
【摘要】第一篇:利用放縮法證明數(shù)列不等式的技巧“揭秘” 龍?jiān)雌诳W(wǎng)://. 利用放縮法證明數(shù)列不等式的技巧“揭秘”作者:顧冬生 來(lái)源:《新高考·高三數(shù)學(xué)》2013年第06期 數(shù)列型不等式的證明題,常常...
2024-10-28 22:50