【摘要】眾所周知,不等式解法是不等式這一板塊的高考備考重點(diǎn),其中,含有參數(shù)的不等式的問題,是主考命題的熱點(diǎn),又是復(fù)習(xí)提高的難點(diǎn)。?。?)解不等式,尋求新不等式的解集; ?。?)已知不等式的解集(或這一不等式的解集與相關(guān)不等式解集之間的聯(lián)系),尋求新含參數(shù)的值或取值范圍。 ?。?)注意到上述題型(2)的難度與復(fù)雜性,本專題對(duì)這一類含參不等式問題的解題策略作以探索與總結(jié)。 一、立足于“直面
2025-03-24 23:42
【摘要】第一篇:高三數(shù)學(xué)專題復(fù)習(xí)——數(shù)列不等式(放縮法) 高三數(shù)學(xué)專題復(fù)習(xí)——數(shù)列不等式(放縮法) 教學(xué)目標(biāo):學(xué)會(huì)利用放縮法證明數(shù)列相關(guān)的不等式問題教學(xué)重點(diǎn):數(shù)列的構(gòu)造及求和教學(xué)難點(diǎn):放縮法的應(yīng)用 證明...
2025-10-20 07:04
【摘要】第一篇:不等式證明練習(xí)題 不等式證明練習(xí)題 (1/a+2/b+4/c)*1 =(1/a+2/b+4/c)*(a+b+c) 展開,得 =1+2a/b+4a/c+b/a+2+4b/c+c/a+2...
2025-10-18 11:21
【摘要】第一篇:不等式證明練習(xí)題 11n+3恒成立,則n的最大值是()a-bb-ca-c A.2B.3C.4D.61.設(shè)abc,n?N,且 x2-2x+22.若x?(-¥,1),則函數(shù)y=有()2x...
2025-10-20 06:56
【摘要】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設(shè)有兩組實(shí)數(shù) a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2025-10-28 03:16
【摘要】3eud教育網(wǎng)百萬教學(xué)資源,完全免費(fèi),無須注冊(cè),天天更新!典型例題一例1解不等式:(1);(2).分析:如果多項(xiàng)式可分解為個(gè)一次式的積,則一元高次不等式(或)可用“穿根法”求解,但要注意處理好有重根的情況.解:(1)原不等式可化為把方程的三個(gè)根順次標(biāo)上數(shù)軸.然后從右上開始畫線順次經(jīng)過三個(gè)根,其解集如下圖的陰影部分.∴原不等式解集為(2)原不等式等價(jià)
2025-04-04 04:58
【摘要】第一篇:分析法證明不等式專題 分析法證明不等式 已知非零向量a,b,a⊥b,求證|a|+|b|/|a+b| 2【1】 ∵a⊥b ∴ab=0 又由題設(shè)條件可知,a+b≠0(向量) ∴|a+...
2025-11-05 18:10
【摘要】近年來在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問題和解決問題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關(guān)系的樸素思想和基本出發(fā)點(diǎn),?有極大的遷移性,對(duì)它的運(yùn)用往往能體現(xiàn)出創(chuàng)造性。“放縮法”它可以和很多知識(shí)內(nèi)容結(jié)合,對(duì)應(yīng)變能力有較高的要求。因?yàn)榉趴s必須有目標(biāo),而且要恰到
2025-04-16 23:50
【摘要】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過高,即使不會(huì)也可以,如果沒有時(shí) 間就不用看了) 在學(xué)習(xí)過程中,常遇到一些不等式的證明,看似簡(jiǎn)單,但卻無從下手,多種常用...
2025-10-19 01:37
【摘要】第一篇:巧用構(gòu)造函數(shù)法證明不等式 構(gòu)造函數(shù)法證明不等式 一、構(gòu)造分式函數(shù),利用分式函數(shù)的單調(diào)性證明不等式 【例1】證明不等式:|a|+|b||a+b| 1+|a|+|b|≥1+|a+b| 證...
2025-10-17 14:47
【摘要】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2025-10-20 11:38
【摘要】不等式的解法????類型mdcxbax)2(a)x(fa)x(f)1(??????或形如定理bababa?????baba)iv(baba)iii(baba)ii(baba)i(,Rb,a)1(1????????????
2025-07-18 00:19