【摘要】2.2.2間接證明【學(xué)習(xí)要求】1.了解反證法是間接證明的一種基本方法.2.理解反證法的思考過(guò)程,會(huì)用反證法證明數(shù)學(xué)問(wèn)題.【學(xué)法指導(dǎo)】反證法需要逆向思維,難點(diǎn)是由假設(shè)推出矛盾,在學(xué)習(xí)中可通過(guò)動(dòng)手證明體會(huì)反證法的內(nèi)涵,歸納反證法的證題過(guò)程.本課時(shí)欄目開關(guān)填一
2024-11-25 17:03
【摘要】2.間接證明一、基礎(chǔ)過(guò)關(guān)1.反證法的關(guān)鍵是在正確的推理下得出矛盾.這個(gè)矛盾可以是________(填序號(hào)).①與已知條件矛盾②與假設(shè)矛盾③與定義、公理、定理矛盾④與事實(shí)矛盾2.否定:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為__________________________.3.
2024-12-13 06:24
【摘要】§導(dǎo)數(shù)的運(yùn)算常見函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo),進(jìn)一步理解運(yùn)用概念求導(dǎo)數(shù)的方法.見函數(shù)的導(dǎo)數(shù)公式..1.幾個(gè)常用函數(shù)的導(dǎo)數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
2024-12-13 09:29
【摘要】間接證明--反證法1.教學(xué)目標(biāo):知識(shí)與技能:結(jié)合已經(jīng)學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解間接證明的一種基本方法──反證法;了解反證法的思考過(guò)程、特點(diǎn)。過(guò)程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問(wèn)題和解決問(wèn)題的能力;情感、態(tài)度與價(jià)值觀:通過(guò)學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣:了解反證法的思考過(guò)程、特點(diǎn)3
2024-12-12 21:27
【摘要】數(shù)系的擴(kuò)充雙基達(dá)標(biāo)?限時(shí)20分鐘?1.復(fù)數(shù)-2i+的實(shí)部是________,虛部是________.答案-22.復(fù)數(shù)2+3i,-3+12i,-13i,-3-5i中的純虛數(shù)是________.答案-13i3.已知(2x-1)+i=y(tǒng)-(3-y)i,其中x,
2024-12-13 09:28
【摘要】綜合檢測(cè)一、填空題1.i是虛數(shù)單位,復(fù)數(shù)1-3i1-i的共軛復(fù)數(shù)是________.2.演繹推理“因?yàn)閷?duì)數(shù)函數(shù)y=logax(a0且a≠1)是增函數(shù),而函數(shù)y=log12x是對(duì)數(shù)函數(shù),所以y=log12x是增函數(shù)”所得結(jié)論錯(cuò)誤的原因是________.3.用反證法證明命題:“若a,b
2024-12-13 09:21
【摘要】復(fù)數(shù)的幾何意義雙基達(dá)標(biāo)?限時(shí)20分鐘?1.復(fù)數(shù)z=-1+i1+i-1,則在復(fù)平面內(nèi)z所對(duì)應(yīng)的點(diǎn)在第______象限.解析z=?-1+i??1-i??1+i??1-i?-1=2i2-1=-1+i.答案第二象限2.在復(fù)平面內(nèi),復(fù)數(shù)21+i對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離是____
【摘要】簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo)能求形如f(ax+b)形式的復(fù)合函數(shù)的導(dǎo)數(shù).[來(lái)源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對(duì)于兩個(gè)函數(shù)y=f(u)和u=g(x),如果通過(guò)變量u,y可以表示成x的函數(shù),那么稱這個(gè)函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
【摘要】§數(shù)學(xué)歸納法課時(shí)目標(biāo).2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.握數(shù)學(xué)歸納法的實(shí)質(zhì)及與歸納,猜想的關(guān)系..1.?dāng)?shù)學(xué)歸納法公理對(duì)于某些________________的數(shù)學(xué)命題,可以用數(shù)學(xué)歸納法證明.2.證明步驟對(duì)于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,如果(1)當(dāng)n________
【摘要】:(順推證法)(由因?qū)Ч?從已知條件和某些數(shù)學(xué)定義,定理,公理等出發(fā),經(jīng)過(guò)一系列推理論證,最后推導(dǎo)出所要證明的結(jié)論成立的證明方法.2222,0,()()4ababcbcaabc?????例:已知求證:2222222222:2,0(
2024-11-25 17:10
【摘要】2.1.2演繹推理【學(xué)習(xí)要求】1.理解演繹推理的意義.2.掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理.3.了解合情推理和演繹推理之間的區(qū)別和聯(lián)系.【學(xué)法指導(dǎo)】演繹推理是數(shù)學(xué)證明的主要工具,其一般模式是三段論.學(xué)習(xí)中要挖掘證明過(guò)程包含的推理思路,明確演繹推理的基本過(guò)程.本
2024-11-25 23:13
【摘要】直接證明與間接證明知能闡釋一、要點(diǎn)透析1.綜合法一般地,從已知條件出發(fā),以已知的定義、公理、定理為依據(jù),逐步下推,直到推出要證明的結(jié)論為止.這種證明方法常稱為綜合法.綜合法的推證過(guò)程如下:注意:應(yīng)用綜合法時(shí),應(yīng)從命題的前提出發(fā),在選定了出發(fā)點(diǎn)以后(它基于題設(shè)或已知的真命題),再依次由它得出一系列的命題(或判斷
2024-12-17 04:43
【摘要】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會(huì)用定積分表示陰影部分的面積重點(diǎn)難點(diǎn):定積分的定義是本節(jié)的重點(diǎn),定積分的幾何意義的應(yīng)用是本節(jié)的難點(diǎn)。教學(xué)內(nèi)容:定積分:一般地,設(shè)函數(shù)()fx在區(qū)間[
2024-11-27 21:26
【摘要】定積分課時(shí)目標(biāo)..分.1.定積分的概念:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個(gè)小區(qū)間,每個(gè)小區(qū)間長(zhǎng)度為Δx(Δx=b-an),在每個(gè)小區(qū)間上取一點(diǎn),依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-13 03:08
【摘要】課題:演繹推理教學(xué)目標(biāo):1.了解演繹推理的含義。2.能正確地運(yùn)用演繹推理進(jìn)行簡(jiǎn)單的推理。3.了解合情推理與演繹推理之間的聯(lián)系與差別。教學(xué)重點(diǎn):正確地運(yùn)用演繹推理進(jìn)行簡(jiǎn)單的推理教學(xué)難點(diǎn):了解合情推理與演繹推理之間的聯(lián)系與差別。教學(xué)過(guò)程:一.復(fù)習(xí):合情推理歸納推理從特殊到一般