【摘要】12?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長(zhǎng)我們可以對(duì)通過(guò)研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時(shí)型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會(huì)導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運(yùn)用導(dǎo)數(shù)研究函數(shù)下面34?????
2024-11-26 15:24
【摘要】函數(shù)的極值與導(dǎo)數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)
2024-11-26 12:08
【摘要】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-單調(diào)性》教學(xué)目標(biāo)?原理;??教學(xué)重點(diǎn):?利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導(dǎo)數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級(jí)oyxyox1oyx1xy1?122???
2024-11-26 12:15
【摘要】2020/12/242020/12/24???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號(hào)有什么變化地相應(yīng)特點(diǎn)此點(diǎn)附近的圖象有什么是多少呢在此點(diǎn)的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺(tái)跳水運(yùn)動(dòng)員時(shí)我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'?
2024-11-25 05:49
【摘要】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)的應(yīng)用第1課時(shí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)研究股票時(shí),我們最關(guān)心的是股票的發(fā)展趨勢(shì)(走高或走低)以及股票價(jià)格的變化范圍(封頂或保底).從股票走勢(shì)曲線圖來(lái)看,股票有升有降.在數(shù)學(xué)上,函數(shù)曲線也有升有降,就是
2024-11-25 20:10
【摘要】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會(huì)利用導(dǎo)數(shù)畫出函數(shù)的大致圖像?!窘虒W(xué)重點(diǎn)】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點(diǎn)】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁(yè),填寫知識(shí)點(diǎn).):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
2024-12-11 11:30
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用,第一頁(yè),編輯于星期六:點(diǎn)三十七分。,3.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用3.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù),第二頁(yè),編輯于星期六:點(diǎn)三十七分。,,梳理知識(shí)夯實(shí)基礎(chǔ),自主學(xué)習(xí)導(dǎo)航,第三頁(yè),編輯于星...
2024-10-22 19:01
【摘要】幾種常見(jiàn)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過(guò)曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動(dòng)過(guò)程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個(gè)統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2024-11-26 12:09
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)單調(diào)性課后知能檢測(cè)蘇教版選修1-1一、填空題1.(2021·南京高二檢測(cè))函數(shù)y=x3-3x2+1的單調(diào)遞減區(qū)間為_(kāi)_______.【解析】y′=3x2-6x=3(x2-2x),令y′0,可得0x2.【答案】
2024-12-12 21:34
【摘要】導(dǎo)數(shù)的應(yīng)用知識(shí)與技能:1.利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?;2.利用導(dǎo)數(shù)求解一些實(shí)際問(wèn)題的最大值和最小值。過(guò)程與方法:1.通過(guò)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?,
2024-11-25 11:59
【摘要】-*-第四章導(dǎo)數(shù)應(yīng)用-*-§1函數(shù)的單調(diào)性與極值-*-導(dǎo)數(shù)與函數(shù)的單調(diào)性首頁(yè)XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.
2024-11-25 08:43
【摘要】第1課時(shí)導(dǎo)數(shù)與函數(shù)的單調(diào)性..對(duì)于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問(wèn)題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問(wèn)題1:增函數(shù)和減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的
2024-11-27 23:17
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2
2024-11-26 08:56
【摘要】2020年高中數(shù)學(xué)函數(shù)的單調(diào)性學(xué)案新人教B版必修1一、三維目標(biāo):知識(shí)與技能:(1)理解函數(shù)單調(diào)性的定義、明確增函數(shù)、減函數(shù)的圖象特征;(2)能利用函數(shù)圖象劃分函數(shù)的單調(diào)區(qū)間,并能利用定義進(jìn)行證明。(3)理解函數(shù)的最值是在整個(gè)定義域上研究函數(shù),體會(huì)求函數(shù)最值是函數(shù)單調(diào)性的應(yīng)用之一。過(guò)程與方法:由一元一次函
2024-11-27 22:43
【摘要】高中數(shù)學(xué)《利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性》教學(xué)實(shí)踐與思考一、對(duì)教材的認(rèn)識(shí)導(dǎo)數(shù)的方法是今后全面研究微積分的重要方法和基本工具,在其它學(xué)科中同樣具有十分重要的作用:在物理學(xué)、經(jīng)濟(jì)學(xué)等其它學(xué)科和生產(chǎn)、生活的各個(gè)領(lǐng)域都有廣泛的應(yīng)用。導(dǎo)數(shù)的出現(xiàn)推動(dòng)了人類事業(yè)向前發(fā)展;因此,在高中數(shù)學(xué)課程中設(shè)置導(dǎo)數(shù)的方法有其獨(dú)特的價(jià)值和作用。本章新課程中設(shè)置的內(nèi)容與傳統(tǒng)內(nèi)容有很
2024-08-14 16:20