【摘要】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222
2024-11-25 23:32
【摘要】余弦定理(二)課時(shí)目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問(wèn)題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
2024-12-13 10:14
【摘要】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點(diǎn)D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-17 03:46
【摘要】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的______等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推論cosA=_
【摘要】課題:余弦定理(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用余弦定理解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題【課前預(yù)習(xí)】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-11-28 01:05
【摘要】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-01-12 16:31
【摘要】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2024-10-26 01:32
【摘要】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問(wèn)題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡(jiǎn)單的實(shí)際問(wèn)題轉(zhuǎn)化為...
2024-10-28 16:14
【摘要】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對(duì)大邊大邊對(duì)大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-26 08:48
【摘要】正弦定理、余弦定理及其運(yùn)用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實(shí)際應(yīng)用問(wèn)題中的基本概念和術(shù)語(yǔ)?五、例題講解?六、高考題再現(xiàn)?七、小結(jié)本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標(biāo)及《教學(xué)要求》中對(duì)正弦定理、余弦定理的要求均為理解(B)。在高考試題中
【摘要】正、余弦定理綜合應(yīng)用(1)實(shí)際問(wèn)題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實(shí)際問(wèn)題的解還原說(shuō)明實(shí)際問(wèn)題應(yīng)用模型問(wèn)題1.怎樣測(cè)量一個(gè)底部不能到達(dá)的建筑物的高度?如圖,在北京故宮的四個(gè)角上各矗立著一座角樓,如何通過(guò)測(cè)量,求得角樓的高度?
【摘要】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國(guó)宣布了自己的探月計(jì)劃:中國(guó)將在2020年把“嫦娥一號(hào)”繞月衛(wèi)星送入太空,2020年實(shí)現(xiàn)發(fā)射軟著陸器登陸月球.路透社報(bào)道:中國(guó)將在2024年把人送上月球.
2024-11-26 08:11
【摘要】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
2025-05-13 12:06