【摘要】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【摘要】排列組合專題訓練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點:排列、組合及簡單計數(shù)問題.菁優(yōu)網(wǎng)版權所有專題:應用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結論.
2025-08-11 07:27
【摘要】2010年高考真題排列組合一、選擇題:1.(2010年高考山東卷理科8)某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在第四位、節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺晚會節(jié)目演出順序的編排方案共有(A)36種 (B)42種 (C)48種 (D)54種【答案】B【解析】分兩類:第一類:甲排在第一位,共有種排法;第二類:甲排在第二
2025-08-11 06:31
【摘要】排列組合公式/排列組合計算公式排列P------和順序有關組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列
2025-08-11 07:21
【摘要】范文范例參考排列組合公式/排列組合計算公式排列P------和順序有關??組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式
2025-07-01 22:59
【摘要】【新狀元理科】【新狀元理科】排列組合綜合(拓展題)姓名:1、學校十佳歌手大賽的10名獲獎選手中,每3人都要照一張合影。請問:需要拍多少張照片?2、郭懿孜要從8門課程中選學3門,一共有多少種選法?如果數(shù)學課與鋼琴課時間沖突,不能同時學,她一共有多少種選法?
2025-01-12 05:38
【摘要】排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭奪數(shù)學、
2025-08-10 18:28
【摘要】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2025-08-11 07:38
【摘要】高二數(shù)學集體備課學案與教學設計章節(jié)標題選修2-3排列組合專題計劃學時1學案作者楊得生學案審核張愛敏高考目標掌握排列、組合問題的解題策略三維目標一、知識與技能。?;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會知識的類比遷移。以
2025-08-11 06:55
【摘要】排列組合應用題數(shù)學教研組盛建芳復習回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-28 23:43
【摘要】解排列組合應用題的策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應用題的有效途徑;下面就談一談排列組合應用題的解題策略.1.相鄰問題捆綁法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.例1.五人并排站成一排,如果必須
2025-06-13 22:44
【摘要】排列組合復習二、重點難點三、綜合練習四、復習建議一、知識結構基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應用問題一、知識結構二、重點難點1.兩個基本原理
2024-11-26 00:34
【摘要】一,映射與排列組合問題變式:同(2)257對集合A中元素進行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關系,將對集合A中元素的計數(shù)問題轉化為對集合B的計數(shù)。且A與B是一一對應關系。三,構造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-18 03:08
【摘要】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎確定幸運觀眾,若先確定一名“幸運之星”,然后再從兩信箱中各確定一名幸運伙伴,有多少種不同的結果?練習.如圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-17 06:20
【摘要】排列組合復習課教學設計------龍巖二中郭小峰排列組合復習課一.教學內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-07 04:21