【摘要】初中數(shù)學(xué)(北師大版)八年級(jí)上冊(cè)第一章 勾股定理1 探索勾股定理知識(shí)點(diǎn)一????勾股定理的探索 探索勾股定理的方法?1 探索勾股定理例1 如圖1-1-1,在直角三角形外部作出3個(gè)正方形.設(shè)小方格的邊長(zhǎng)為1,完成下列問題.圖1-1-1(1)正方形A中含有 ??
2025-06-23 19:53
【摘要】初中數(shù)學(xué)(北師大版)八年級(jí)上冊(cè)第一章勾股定理知識(shí)點(diǎn)一圓柱側(cè)面上兩點(diǎn)間的最短距離圓柱側(cè)面的展開圖是一個(gè)長(zhǎng)方形.圓柱側(cè)面上兩點(diǎn)之間最短距離的求法是把圓柱側(cè)面展開成平面圖形,依據(jù)兩點(diǎn)之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個(gè)圓
2025-06-26 13:04
【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點(diǎn)間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點(diǎn)之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著圓柱的側(cè)面移動(dòng)到BC的中點(diǎn)S的最短距離為()1
2025-06-25 12:21
2025-06-25 22:14
【摘要】八年級(jí)數(shù)學(xué)北師大版·上冊(cè)第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個(gè)圓柱,它的高等于12cm,底面上圓的周長(zhǎng)等于18cm.在圓柱下底面的點(diǎn)A有一只螞蟻,它想吃到上底面上與點(diǎn)A相對(duì)的點(diǎn)B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個(gè)圓柱,嘗試從點(diǎn)A到點(diǎn)B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2025-06-25 12:11
【摘要】第一章勾股定理3勾股定理的應(yīng)用3勾股定理的應(yīng)用第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個(gè)正方體紙盒的點(diǎn)A沿紙盒表面爬到點(diǎn)B,它所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是()
2025-06-25 22:19
2025-06-26 12:52
【摘要】回顧與思考第一章勾股定理回顧與思考類型之一勾股定理及其應(yīng)用1.Rt△ABC中,斜邊BC=2,則AB2+AC2+BC2的值為()A.8B.4C.6D.無法計(jì)算A2.如圖1-X-1,
2025-06-21 07:22
2025-06-25 12:18
【摘要】第一章勾股定理1探索勾股定理第一課時(shí),較長(zhǎng)的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長(zhǎng)的平方為()
2025-06-18 01:43
【摘要】第二課時(shí)剪四個(gè)與圖①完全相同的直角三角形,然后將它們拼成如圖②所示的圖形.(1)大正方形的邊長(zhǎng)可以表示為,面積可以表示為.(2)大正方形由4個(gè)三角形和1個(gè)小正方形組成,面積可以表示為.對(duì)比兩種表示方法,可以得到等式:,
【摘要】自我綜合評(píng)價(jià)(一)第一章勾股定理自我綜合評(píng)價(jià)(一)一、選擇題(每小題3分,共24分)1.如圖1-Z-1所示的各直角三角形中,其中邊長(zhǎng)x=5的三角形的個(gè)數(shù)是()圖1-Z-1A.1B.2C.3D.4B[
2025-06-18 12:45
【摘要】1(北師大版)八年級(jí)數(shù)學(xué)(上)第一章勾股定理檢測(cè)題班級(jí)________姓名___________學(xué)號(hào)_______總分_______一、填空題:(每題2分,共20分)1.若直角三角形兩直角邊之比為3∶4,斜邊的長(zhǎng)為25cm,則這個(gè)直角三角形的面積是________________.2.在△ABC中,22nm
2024-09-12 16:29
【摘要】 ?勾股定理知識(shí)總結(jié)一:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平
2025-04-10 03:54
【摘要】第一章第一章勾股定理勾股定理八年級(jí)數(shù)學(xué)北師大版·上冊(cè)探索勾股定理(第2課時(shí))一、新課引入一、新課引入如圖,分別以直角三角形的三條邊為邊長(zhǎng)向外作正方形,你能利用這個(gè)圖說明勾股定理的正確性嗎?一、新課引入一、新課引入方法一:方法二:“割”“補(bǔ)”分割為四個(gè)直角三角形和一個(gè)小正方形.補(bǔ)成大正方形,用大正方形的面積減
2025-06-27 05:34