freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級(jí)導(dǎo)學(xué)案內(nèi)容-文庫吧資料

2025-06-13 15:23本頁面
  

【正文】 的四邊形是平行四邊形.(4) 的四邊形是平行四邊形.三、合作探究例已知:如圖,ABCD中,E、F分別是ABCDE F OAC上兩點(diǎn),對(duì)角線AC、BD相交于點(diǎn)O,且AE=CF求證:四邊形BEDF是平行四邊形.我的收獲:洮南市第九中學(xué) 八年級(jí)數(shù)學(xué)(下)導(dǎo)學(xué)案 主備人: 審核人: 年 月 日 姓名:課 題(2)課 型新 授 課四、當(dāng)堂檢測(cè)已知三角形的邊長分別是6cm、8cm和10cm,順次連接各邊中點(diǎn)所得的三角形周長和面積分別是 和 .2.如圖1所示,EF是△ABC的中位線,若BC=8cm,則EF=_______cm.3.如圖2所示,A,B兩點(diǎn)分別位于一個(gè)池塘的兩端,小聰想用繩子測(cè)量A,B間的距離,但繩子不夠長,一位同學(xué)幫他想了一個(gè)主意:先在地上取一個(gè)可以直接到達(dá)A,B的點(diǎn)C,找到AC,BC的中點(diǎn)D,E,并且測(cè)出DE的長為10m,則A,B間的距離為( ) A.15m B.25m C.30m D.20m (1) (2) (3) (4)4.如圖3,在△ABC中,E,D,F(xiàn)分別是AB,BC,CA的中點(diǎn),AB=6,AC=4,則四邊形AEDF的周長是( ) A.10 B.20 C.30 D.405.如圖4 所示,□ ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AE=EB,求證:OE∥BC.6.已知:△ABC的中線BD、CE交于點(diǎn)O,F(xiàn)、G分別是OB、OC的中點(diǎn).求證:四邊形DEFG是平行四邊形.學(xué)習(xí)目標(biāo)1.了解三角形的中位線的概念,掌握三角形的中位線定理,并能解決實(shí)際問題。 (4) (3) (2) .“說”:類比平行線的性質(zhì)與判定,將平行四邊形性質(zhì)中的條件和結(jié)論互換位置:(1) (定義);; ;(2)從角看: cm, DO=圖1圖2圖3(2)、如圖2,AD=BC=16, AB=CD=15,cm, CD=第1題 第3題 第4題學(xué)后反思:洮南四中八年級(jí)數(shù)學(xué)下導(dǎo)學(xué)案 主備人: 審核人: 審批人: 班級(jí): 組別:課 題(1)課 型新 授 課例2 已知:如圖,ABCD中,E、F分別是AD、BC的中點(diǎn),求證:四邊形EBFD是平行四邊形. 結(jié)論(5) 的四邊形是平行四邊形四、當(dāng)堂檢測(cè) 判斷題:(1)相鄰的兩個(gè)角都互補(bǔ)的四邊形是平行四邊形; (    )(2)兩組對(duì)角分別相等的四邊形是平行四邊形; (    )(3)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形; (    )(4)一組對(duì)邊平行且相等的四邊形是平行四邊形; (    )(5)對(duì)角線相等的四邊形是平行四邊形; (    )(6)對(duì)角線互相平分的四邊形是平行四邊形. (    )填空:(1)如圖1,若AD=8cm, AB=4cm,那么BC= ABCD中,兩條對(duì)角線AC、BD相交于點(diǎn)O,指出圖形中相等的線段。四、講授新課:關(guān)于對(duì)角線的性質(zhì)已知:如圖,?ABCD中,對(duì)角線AC和BD相交于點(diǎn)O求證:OA=OC,OB=OD證明: 五、合作探究:1. 已知平行四邊形ABCD的周長是48cm,AB比BC長4cm,那么這個(gè)四邊形的各邊長為多少? 2. 平行四邊形ABCD的周長為60cm,△AOB的周長比△COB的周長大8cm,則AB= ,BC= 。 平行四邊形對(duì)邊平行且 ;平行四邊形對(duì)角 。3:通過小組交流合作學(xué)習(xí),促進(jìn)同學(xué)的情感交流,體會(huì)學(xué)習(xí)的樂趣,在自我評(píng)價(jià)中學(xué)會(huì)自我肯定,增強(qiáng)學(xué)習(xí)的自信心。解:一、 學(xué)習(xí)目標(biāo)1:探索并掌握平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分。反思小結(jié)洮南四中八年級(jí)數(shù)學(xué)下導(dǎo)學(xué)案 主備人: 審核人: 審批人: 班級(jí): 組別:課 題平行四邊形的性質(zhì)(二)即平行四邊形的對(duì)角線互相平分。求口 ABCD的面積。(4)口 ABCD中, AB-CB=4cm,周長為32cm,則AB= 。請(qǐng)你用幾何語言表述平行四邊形定義∵ ∥ , ∥ ∴四邊形ABCD是平行四邊形如圖□ABCD中,對(duì)邊有______組,分別是________,對(duì)角有_____組,分別是__________,通過觀察度量可以猜想:平行四邊形兩組對(duì)邊 ;兩組對(duì)角 訓(xùn)練驗(yàn)收當(dāng)堂檢測(cè):(1)在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )∶2∶3∶4 ∶2∶2∶1∶1∶2∶2 ∶1∶2∶1(2)口 ABCD中, ∠A=50176。求證:AE=CF。組別 。審批人;   。直角三角形一直角邊為12,斜邊長為13,則它的面積是 。A、 B、1, C、4,5,6 D、1,如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長 為1,則AB=__ __。已知三角形三邊長分別為5,12,13,則此時(shí)三角形的是 。求四邊形ABCD的面積。(3)求高CD的長度。求(1)△ABC的面積S△ABC。水的深度與這根蘆葦?shù)拈L度分別是多少?分析:這是一個(gè)實(shí)際問題,思路是將實(shí)際問題抽象成數(shù)學(xué)模型來解決,該數(shù)學(xué)模型就是直角三角形,然后利用勾股定理列出方程,便可求出蘆葦?shù)拈L度。解: (二)合作探究(學(xué)生獨(dú)立思考,然后互相探究,最后點(diǎn)撥此問題的關(guān)鍵)例有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池的正中央有一根蘆葦,它高出水面1尺。它們離開港口一個(gè)半小時(shí)后相距30海里。二、知識(shí)回顧勾股定理的內(nèi)容是什么?勾股定理的逆定理的內(nèi)容是什么?你能說一下勾股定理及其逆定理的作用分別是什么嗎?三、導(dǎo)學(xué)內(nèi)容(一)自主學(xué)習(xí)(教師引導(dǎo),學(xué)生獨(dú)立完成畫圖,并解答)例某港口位于東西方向的海岸線上。若△ABC的三邊滿足,試判斷△ABC的形狀。已知如圖AD=4,AB=3,∠A=90o,BC=13,CD=12。四、課堂檢測(cè)用勾股定理的逆定理判斷下列線段a、b、c組成的三角形是否為直角三角形?(1)a=,b=2,c= (2)a=,b=1,c=(3)a=1,b=2,c=各組數(shù)中,以為邊的三角形不是直角三角形的是( )A、 B、 C、 D、三角形的三邊滿足,則此三角形是( )。(二)合作探究(小組內(nèi)合作完成,并注意判斷方法)例1:判斷下列線段a、b、c組成的三角形是否為直角三角形?(1)a=15,b=20,c=25解:∵= = = = ∴a2+b2 ____ c2 (填“=”或“≠”)所以a、b、c組成的三角形 (填“是”或“不是”)直角三角形。 ,即△ABC是 三角形 分析:本題可利用三角形全等來解決此問題。求證:∠C=90o 。在學(xué)習(xí)中體會(huì)古人的偉大以及在生產(chǎn)生活中解決實(shí)際問題的快樂感。四、課題檢測(cè)一旗桿離地面6米處折斷,旗桿頂部落在離旗桿8米處,旗桿折斷之前有多少米?(提示:折斷前的長度應(yīng)該是AB+BC的長)解:如圖,為了求出位于湖兩岸的兩點(diǎn)A、 B之間的距離,一個(gè)觀測(cè)者在點(diǎn)C設(shè)樁,使三角形ABC恰好為直角三角形.通過測(cè)量,得到AC長160米,BC長128米.問從點(diǎn)A穿過湖到點(diǎn)B有多遠(yuǎn)?五、課后反思洮南市第三中學(xué)八年級(jí)下數(shù)學(xué)導(dǎo)學(xué)案 主備人: 審核人: 審批人: 年級(jí): 組別:課 題 勾股定理的逆定理一、學(xué)習(xí)目標(biāo) 掌握勾股定理的逆定理以及證明方法。如圖,一個(gè)圓錐的高AO=,底面半徑OB=,求AB的長。(2)若∠A=450,求BC、AC。(1)若∠B=300,求BC、AC??偨Y(jié):利用勾股定理,可以做出長為……的線段。由此可以依照如下方法,在數(shù)軸上畫出表示的點(diǎn)。容易知道,長為的線段是兩條直角邊都為 的直角三角形的斜邊。二、知識(shí)回顧三角形的面積公式是什么?等腰三角形有什么性質(zhì)?等腰直角三角形有什么性質(zhì)?有一個(gè)角為30176。能夠提高運(yùn)用勾股定理解決問題的能力。已知△ABC中,∠B=90176。在一個(gè)直角三角形中,若斜邊長為17cm,一條直角邊的長為5cm,則另一條直角邊的長為 。(1)若a=6,b=8,則c= ; (2)若c=13,b=12,則a= ;(3)若a=4, c=6,則b= 。四、課題檢測(cè)在Rt△ABC中,∠C=90176。例1: 在Rt△ABC中,∠C=90176。利用“直角梯形的面積”=“三個(gè)直角三角形的面積和”(二)合作探究(學(xué)生獨(dú)立思考,然后互相探究,最后教師歸納總結(jié))如圖一,觀察圖中用陰影畫出的三個(gè)正方形(每一個(gè)小方格的邊長為1)∵= ,= ;∴ = 即:(用字母表示)分析:利用面積等整理得出勾股定理公式?!邇煞N方法都是表示同一個(gè)圖形的面積∴ = 即 = ∴(用字母表示)分析:利用兩種方法求出大正方形的面積,在利用面積等整理得出勾股定理公式。二、知識(shí)回顧三角形的面積公式是什么?三角形三個(gè)內(nèi)角的關(guān)系如何?直角三角形兩個(gè)銳角之間的關(guān)系如何?設(shè)三角形三邊分別為a、b、c,則三角形三邊關(guān)系如何?三、導(dǎo)學(xué)內(nèi)容(一)自主學(xué)習(xí)(學(xué)生自學(xué)教材完成) 利用幾何圖形的性質(zhì)探索勾股定理:剪4個(gè)與圖1完全相同的直角三角形,再將它們拼成如圖2所示的圖形。提高學(xué)生發(fā)現(xiàn)問題、解決問題和總結(jié)規(guī)律的能力。知識(shí)點(diǎn)6:二次根式的加減步驟: ;;3分類;。四、教學(xué)反思一、學(xué)習(xí)目標(biāo) ,會(huì)化簡二次根式,會(huì)進(jìn)行二次根式的乘除、加減混合運(yùn)算.,體會(huì)二次根式的解題方法,在解題中進(jìn)行比較,尋求有效快捷的計(jì)算方法..:知識(shí)點(diǎn)二次根式的概念:形如 的式子叫做二次根式。(2)已知:,求的值。洮南市向陽中學(xué)八年級(jí)下數(shù)學(xué)導(dǎo)學(xué)案 主備人: 審核人: 審批人 : 班級(jí): 姓名: 組別:課題第十六章 二次根式復(fù)習(xí)(2)、b在軸上的位置如圖所示,且|a|>|b|,則化簡的結(jié)果為( ?。〢.2a+b B.2a+b C.b D.2ab(  )  A. x≥﹣1 B. ﹣1≤x≤2 C. x≤2 D. ﹣1<x<2 ,小數(shù)部分為n,求3m+2
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1