【摘要】......破解橢圓中最值問題的常見策略浬浦中學蔡明有關圓錐曲線的最值問題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時的高考復習需有所重視。圓錐曲線最值問題具有綜合性強、涉及知識面廣而且常含有變量的一類難題,也是教學中的一個難點。要解決這類問題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)
2025-03-31 06:36
【摘要】橢圓中的定點定值問題1.已知橢圓C:()的右焦點為F(1,0),且(,)在橢圓C上。(1)求橢圓的標準方程;(2)已知動直線l過點F,且與橢圓C交于A、B兩點,試問x軸上是否存在定點Q,使得恒成立?若存在,求出點Q的坐標;若不存在,請說明理由。解:(1)由題意知c=1.由橢圓定義得,即--3分∴,橢圓C方程為.(2)假設在x軸上存在點Q(m,0),使得恒成立。
2025-03-30 05:51
【摘要】圓中的最值問題【考題展示】題1(2012年武漢中考)在坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C是第一象限內(nèi)一點,且AC=2.設tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調(diào))如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O為圓心OA長為半徑作⊙O,C為半圓弧上的一個動點(不與A、B兩點重合),射線AC交
2025-03-31 00:00
【摘要】破解橢圓中最值問題的常見策略浬浦中學蔡明有關圓錐曲線的最值問題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時的高考復習需有所重視。圓錐曲線最值問題具有綜合性強、涉及知識面廣而且常含有變量的一類難題,也是教學中的一個難點。要解決這類問題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)學思想方
2024-09-12 13:09
【摘要】專業(yè)代碼:070101學號:090704010064貴州師范大學(本科)畢業(yè)論文題目:函數(shù)最值問題常見的求法學院:數(shù)學與計算機科學學院
2024-09-05 23:50
【摘要】解析幾何中的最值問題一、教學目標解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當高的能力要求,正基于此,這類問題近年來成為了數(shù)學高考中的難關。二、教學重點方法的靈活應用。三、教學程序1、基礎知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-08 16:15
【摘要】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點坐標分別為,則它的弦長注:實質(zhì)上是由兩點間距離公式推導出來的,只是用了交點坐標設而不求的技巧而已(因為,運用韋達定理來進行計算.2當直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-31 06:29
【摘要】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-31 00:03
【摘要】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-30 12:12
【摘要】圓錐曲線中的最值問題復習1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點M(1,3),F1、F2分別為橢圓的左、右焦點,A為橢圓上的任意一點,求:①∣AM│+∣AF2│
2024-08-29 02:08
2025-08-10 15:01
【摘要】直線中的最值問題基礎卷一.選擇題:1.設-π≤α≤π,點P(1,1)到直線xcosα+ysinα=2的最大距離是(A)2-(B)2+(C)2(D)2.點P為直線x-y+4=0上任意一點,O為原點,則|OP|的最小值為(A)(B)(C)2(D)23.已知兩點P(cosα,sinα),Q(cosβ,sinβ),則|PQ|的最大值
【摘要】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關系)求最值;(2)應用垂線段最短的性質(zhì)求最值;(3)應用軸對稱的性質(zhì)求最值;(4)應用二次函數(shù)求最值;(5)應用其它知
2025-04-10 03:00
【摘要】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點E在AB上,且AE=2(AE<AD),點P是AC上的動點,則PE+PB的最小值是__________.PEDCBACDQPBA
2024-08-18 20:49
【摘要】平面向量中的最值問題淺析耿素蘭山西平定二中(045200)平面向量中的最值問題多以考查向量的基本概念、基本運算和性質(zhì)為主,解決此類問題要注意正確運用相關知識,合理轉(zhuǎn)化。一、利用函數(shù)思想方法求解例1、給定兩個長度為1的平面向量和,,,則的最大值是________.圖11分析:尋求刻畫點變化的變量,建立目標與此變量的函數(shù)關系是解決最值問題的常用途徑。解
2025-03-31 01:21