【摘要】第一篇:初中幾何證明技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。 *(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*...
2024-11-05 14:12
【摘要】第一篇:初中幾何證明技巧2 初中幾何證明技巧(分類) 證明兩線段相等 。。 。 等腰三角形兩腰相等;兩腰上的高相等;兩腰上的中線相等。 平行四邊形的對角線被交點(diǎn)分成的兩段相等。等腰梯形兩腰...
2024-11-05 13:50
【摘要】初中幾何證明中的幾種解答技巧(教師用) 幾何證明中的幾種技巧一.角平分線--軸對稱1.已知在ΔABC中,E為BC的中點(diǎn),AD平分,于D.AB=9,AC=13.求DE的長. 分析:延長BD交AC于F.可得ΔABD≌ΔAFD.則BD=DF.又BE=EC,即DE為ΔBCF的中位線.∴.2.已知在ΔABC中,,AB=AC,BD平分.求證:B
2025-05-19 01:59
【摘要】第一篇:初中幾何證明口訣 初中幾何證明口訣 三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試看。平行移動(dòng)對角線,補(bǔ)成三角...
2024-11-09 01:29
【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG問題補(bǔ)充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來就是因?yàn)闆]有利用好隱藏...
2024-10-21 22:38
【摘要】第一篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧 人說幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫? 輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊...
2024-10-28 22:46
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對于證明題,有三種思考方式: (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】第一篇:初中幾何證明 初中數(shù)學(xué)幾何解題思路 從求證出發(fā) 你就要想,這道題要求證這個(gè),就要有.....這些條件,再看已知,有了這些條件了,噢,還差這個(gè)條件。然后就找條件來證明這個(gè)還差的條件,然后全...
2024-11-09 01:32
【摘要】8.如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ?。?A.20° B.25° C.30° D.35°考點(diǎn): 菱形的性質(zhì).分析: 依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
2025-03-27 12:34
【摘要】1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2024-08-16 03:51
【摘要】淺議初中幾何證明的教學(xué)逸夫中學(xué)/鄭寶燕摘自:《廈門逸夫中學(xué)》摘要:從學(xué)生害怕學(xué)幾何證明,逃避學(xué)幾何證明的現(xiàn)狀入手,分析初中學(xué)生學(xué)習(xí)幾何證明困難的原因,提出教師在教學(xué)中應(yīng)注意幾何語言的教學(xué),注意分析過程綜合化的教學(xué),注意圖形變換在證明中的應(yīng)用,注意設(shè)計(jì)開放性的題目.關(guān)鍵詞:幾何證明現(xiàn)狀、學(xué)習(xí)困難、教學(xué)建議160?!疤煅?,又要開始學(xué)幾何證明了”,“幾何的證明太難學(xué)
2025-06-26 06:33
【摘要】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);(3)如圖2,在(2)的條件下,求折痕FG的長.【答案】解:(1)由折疊的性質(zhì)可得,GA=G
【摘要】幾何證明題解題技巧息縣五中敖勇【知識精讀】1.幾何證明是平面幾何中的一個(gè)重要問題,它對培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過
2025-03-27 12:13