【摘要】初中幾何證明中的幾種解答技巧(教師用) 幾何證明中的幾種技巧一.角平分線--軸對稱1.已知在ΔABC中,E為BC的中點(diǎn),AD平分,于D.AB=9,AC=13.求DE的長. 分析:延長BD交AC于F.可得ΔABD≌ΔAFD.則BD=DF.又BE=EC,即DE為ΔBCF的中位線.∴.2.已知在ΔABC中,,AB=AC,BD平分.求證:B
2025-05-19 01:59
【摘要】第一篇:初中幾何證明技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。 *(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*...
2024-11-05 14:12
【摘要】第一篇:初中幾何證明技巧2 初中幾何證明技巧(分類) 證明兩線段相等 。。 。 等腰三角形兩腰相等;兩腰上的高相等;兩腰上的中線相等。 平行四邊形的對角線被交點(diǎn)分成的兩段相等。等腰梯形兩腰...
2024-11-05 13:50
【摘要】淺議初中幾何證明的教學(xué)逸夫中學(xué)/鄭寶燕摘自:《廈門逸夫中學(xué)》摘要:從學(xué)生害怕學(xué)幾何證明,逃避學(xué)幾何證明的現(xiàn)狀入手,分析初中學(xué)生學(xué)習(xí)幾何證明困難的原因,提出教師在教學(xué)中應(yīng)注意幾何語言的教學(xué),注意分析過程綜合化的教學(xué),注意圖形變換在證明中的應(yīng)用,注意設(shè)計(jì)開放性的題目.關(guān)鍵詞:幾何證明現(xiàn)狀、學(xué)習(xí)困難、教學(xué)建議160?!疤煅剑忠_始學(xué)幾何證明了”,“幾何的證明太難學(xué)
2025-06-26 06:33
【摘要】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學(xué)分析 1、本章節(jié)在整個(gè)教材體系中的地位和作用 本章教材是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)之一,通過研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面...
2024-11-15 06:00
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來就是因?yàn)闆]有利用好隱藏...
2024-10-21 22:38
【摘要】第一篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧 人說幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫? 輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊...
2024-10-28 22:46
【摘要】第一篇:初中幾何證明口訣 初中幾何證明口訣 三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試看。平行移動對角線,補(bǔ)成三角...
2024-11-09 01:29
【摘要】論文標(biāo)題:淺談初中幾何中添加輔助線的技巧作者:鄺淑瑩單位:三水中學(xué)附屬初中日期:2021-8-25聯(lián)系電話:15024263134淺談初中幾何中添加輔助線的技巧三水中學(xué)附屬初中數(shù)學(xué)科組鄺淑瑩摘要:在初中數(shù)學(xué)的學(xué)習(xí)中,平面幾何無疑占據(jù)著十
2025-06-11 06:58
【摘要】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-04-07 03:50
【摘要】初中幾何證明題一.,點(diǎn)是中點(diǎn),,求證:,在中,,,,點(diǎn)是上一點(diǎn),連結(jié),過點(diǎn)做交于.探究與的數(shù)量關(guān)系.,在中,,點(diǎn)在上,點(diǎn)在的延長線上,且,交于點(diǎn).探究與的數(shù)量關(guān)系.
2025-03-27 12:34
【摘要】1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2025-08-08 03:51
【摘要】8.如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ?。?A.20° B.25° C.30° D.35°考點(diǎn): 菱形的性質(zhì).分析: 依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
【摘要】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);(3)如圖2,在(2)的條件下,求折痕FG的長.【答案】解:(1)由折疊的性質(zhì)可得,GA=G
【摘要】幾何證明題解題技巧息縣五中敖勇【知識精讀】1.幾何證明是平面幾何中的一個(gè)重要問題,它對培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過
2025-03-27 12:13