【摘要】淺議初中幾何證明的教學逸夫中學/鄭寶燕摘自:《廈門逸夫中學》摘要:從學生害怕學幾何證明,逃避學幾何證明的現(xiàn)狀入手,分析初中學生學習幾何證明困難的原因,提出教師在教學中應注意幾何語言的教學,注意分析過程綜合化的教學,注意圖形變換在證明中的應用,注意設計開放性的題目.關鍵詞:幾何證明現(xiàn)狀、學習困難、教學建議160。“天呀,又要開始學幾何證明了”,“幾何的證明太難學
2025-06-26 06:33
【摘要】第一篇:淺談初中幾何證明題教學 淺談初中幾何證明題教學 學習幾何對培養(yǎng)學生邏輯思維及邏輯推理能力有著特殊的作用。對于眾多的幾何證明題,幫助學生尋找證題方法和探求規(guī)律,對培養(yǎng)學生的證題推理能力,往往...
2024-10-29 06:03
【摘要】第一篇:如何進行初中幾何證明題的教學 如何進行初中幾何證明題的教學 俗話說:“幾何學、叉叉角角,老師難教、學生難學”我從多年的教學中得到:初中幾何證明題即是學習的重點,又是難點。很多同學對幾何證明...
2024-10-29 02:54
【摘要】第一篇:初中幾何證明口訣 初中幾何證明口訣 三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點。梯形里面作高線,平移一腰試試看。平行移動對角線,補成三角...
2024-11-09 01:29
【摘要】第一篇:初中幾何證明技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。 *(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*...
2024-11-05 14:12
【摘要】第一篇:談初中幾何證明題教學(模版) 談初中幾何證明題教學 眾所周知,幾何證明是初中數(shù)學學習的難點之一,其難就難在如何尋找證明思路,追根問底還是因為幾何證明題的本質不易把握。為此,在初等幾何的學習...
2024-10-29 06:39
【摘要】初中幾何證明中的幾種解答技巧(教師用) 幾何證明中的幾種技巧一.角平分線--軸對稱1.已知在ΔABC中,E為BC的中點,AD平分,于D.AB=9,AC=13.求DE的長. 分析:延長BD交AC于F.可得ΔABD≌ΔAFD.則BD=DF.又BE=EC,即DE為ΔBCF的中位線.∴.2.已知在ΔABC中,,AB=AC,BD平分.求證:B
2025-05-19 01:59
【摘要】初中數(shù)學:幾何證明題的思路要掌握初中數(shù)學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。(2)逆向
2025-04-07 03:50
【摘要】初中幾何證明題一.,點是中點,,求證:,在中,,,,點是上一點,連結,過點做交于.探究與的數(shù)量關系.,在中,,點在上,點在的延長線上,且,交于點.探究與的數(shù)量關系.
2025-03-27 12:34
【摘要】第一篇:有關初中數(shù)學幾何證明題的教學研究 有關初中數(shù)學幾何證明題的教學研究 【摘要】幾何是初中數(shù)學的重難點,教師應該注重幾何證明題教學,讓學生掌握基本的解題技巧。初中數(shù)學幾何證明題需要有明確的思路...
2024-10-29 05:37
【摘要】1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內錯角相等,兩直線平行
2024-08-16 03:51
【摘要】8.如圖,已知E是菱形ABCD的邊BC上一點,且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ) A.20° B.25° C.30° D.35°考點: 菱形的性質.分析: 依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
【摘要】第一篇:初中幾何證明題教學感悟yang 丹桂中學初中幾何證明題教學感悟 教學經驗文章 題目:初中幾何證明題教學感悟 學校:丹桂中學 姓名:楊德偉 初中幾何證明題教學感悟 四川省古藺縣丹桂...
2024-10-29 00:42
【摘要】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB,CD交于點G,F(xiàn),AE與FG交于點O.(1)如圖1,求證:A,G,E,F(xiàn)四點圍成的四邊形是菱形;(2)如圖2,當△AED的外接圓與BC相切于點N時,求證:點N是線段BC的中點;(3)如圖2,在(2)的條件下,求折痕FG的長.【答案】解:(1)由折疊的性質可得,GA=G
【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41